Taschenbuch
der statistischen Qualitäts-
und Zuverlässigkeitsmethoden

Die wichtigsten
Methoden und Verfahren
für die Praxis

Curt Ronniger

www.versuchsmethoden.de
Inhaltsverzeichnis

INHALTSVERZEICHNIS .. 1

SIX SIGMA .. 9

 DIE SIX SIGMA ZYKLEN ... 9
 METHODENÜBERSICHT FÜR DEN DMAIC-ZYKLUS 10
 STATISTISCHE BETRACHTUNG VON SIX SIGMA 10

SYSTEMANALYSE UND VERFAHREN ZUR PARAMETERAUSWAHL ... 12

 EINFÜHRUNG .. 12
 URSACHEN-WIRKUNGSDIAGRAMM NACH ISHIKAWA 13
 ERWEITERTES URSACHEN-WIRKUNGSDIAGRAMM 14
 PARETO-ANALYSE ... 16
 INTENSITÄTS-BEZIEHUNGSMATRIX ... 16
 PRIORISIERUNGS-BEWERTUNG .. 21
 FEHLELBBAUMANALYSE FTA .. 22
 ÜBERSICHT ÜBER DIE WICHTIGSTEN TOOLS DER SYSTEMANALYSE ... 25

VERSUCHSPLANUNG (DESIGN OF EXPERIMENT – DOE) .. 26

 EINFÜHRUNG ... 26
 VOLLFAKTORIELLER VERSUCHSPLAN ... 27
 TEILFAKTORIELLE VERSUCHSPLÄNE .. 28
 PLACKETT-BURMAN-VERSUCHSPLÄNE 29
 TAGUCHI VERSUCHSPLÄNE .. 29
 D-OPTIMALE VERSUCHSPLÄNE ... 32
 MISCHUNGSPLÄNE ... 34
 KATEGORIALE FAKTOREN .. 35
 NOTWENDIGE VERSUCHSWIEDERHOLUNGEN - STICHPROBENUMFAK ... 36
 VERGLEICH DER VERSUCHSPLÄNE .. 37
 ÜBERSICHT .. 38

VARIANZANALYSE (ANOVA) ... 40

 ONE-WAY ANOVA BALANCiert \(\mu_1 = \mu_2 = \mu_3 \ldots \) .. 41
 TWO-WAY ANOVA BALANCiert .. 41
 TWO-WAY ANOVA BALANCiert MIT ZUFALLSFAKTOREN (RANDOM) ... 42
 TWO-WAY ANOVA GESCHACHTELT (NESTED) 43

KORRELATION UND BESTIMMTHEITSMaß .. 43

 KORRELATIONSKOEFFIZIENT NACH BRAVAIS - PEARSON 43
 RANGKORRELATION NACH SPEARMAN .. 44

REGRESSION ... 44

 MULTIPLE REGRESSION ... 45
 Grafische Darstellung des Modells im Kurvendiagramm 46
 Grafische Darstellung der Wechselwirkung 47
 Residuen .. 48
 Bestimmtheitsmaß ... 49

VORHERSAGEMAß DES MODELLS \(Q^2 \) .. 50

 Hinweise: ... 50
 Modellschwäche Lack of Fit .. 51
 Streuungszerlegung gesamthaft ... 52
 Wiederholbarkeit .. 52
 Test der Regressionskoeffizienten, der \(p_{value} \) 52
 Varianzinfationsfaktor (VIF) ... 53
 Standardabweichung für das Gesamtmodell RMS 54
 Normieren ... 54
 Standardisieren .. 54
 BOX-COX-TRANSFORMATION .. 55
QUALITÄTSREGELKARTE FÜR EIN MERKMAL ... 99

STATISTISCHE HYPOTHESENTESTS .. 103

VERTRAUENSBEREICH FÜR DIE ZIELGRÖßE .. 55
Bestimmung von Ausreißern .. 55
Grundsätzliche Überlegungen zu Stabilität und Robustheit 58
Probleme mit zu stark korrelierenden Daten (historische Daten) 60

DIEKERE REGENSIONSANALYSE .. 62

HAUFPKOMPONENTENANALYSE .. 71

PARTIAL LEAST SQUARE (PLS) ... 72
Schätzung der Streuung ... 74

MULTIVARIANTE DATENAUSWERTUNG ... 71
Variableselkation mit VIP .. 74
Score Plot ... 76

KORRELATIONSDADUNGEN (CORRELATION LOADING PLOT) 76

CLUSTERANALYSE ... 77

FÄHIGKEITSSKIZZENHÄLEN ... 81

NORMALVERTEILUNG ... 81
LOGNORMALVERTEILUNG .. 82

BETRAGSVERTEILUNG 1. ART .. 82
BETRAGSVERTEILUNG 2. ART (RAYLEIGH-VERTEILUNG) 83

VERTEILUNGSFREI PERCENTIL-METHODE ... 83

VERTEILUNGSFORMEN VERSCHIEDENER KONSTRUKTIONSMERKAME 83

ÜBERSICHT DER WICHTIGSTEN VERTEILUNGEN .. 84

MASCHINENFÄHIGKEITSUNTERSUCHUNG (MFU) .. 84

PROZESSFÄHIGKEITSUNTERSUCHUNG (PFU) ... 84

MESSMÖGIGKEIT & MESS-SYSTEM-ANALYSE MSA .. 85
Verfahren 1, 2 und 3 .. 85
Mess-System-Analyse mit ANOVA .. 88

MESS-SYSTEM-ANALYSE ANALOG VDA BAND 5 BZW. ISO 22514-7 89

VERRINGERUNG DER MESSUNSICHERHEIT DURCH WIEDERHOLUNGEN 90

GEGENÜBERSTELLUNG ZUR KLASSENVERFENHABEN .. 90

MESS-SYSTEM-ANALYSE FÜR DISKRETE UND ORDNAL SKALIERTE MERKMALE 91

AUSWAHLÜBERSICHT MESS-SYSTEM-ANALYSE .. 95

TOLERANZBERECHNUNG ... 96
Das Gaußische Fehlerfortpflanzungsgesetz ... 96
Abschätzung der Einzelstreungen aus den Toleranzen ... 97

PROZESSDATENTOLERANZSIMULATION ... 97
Beispiel Fahrzeughinterachse .. 98

QUALITÄTSREGELKARTE FÜR DISKRETE MERKMALE .. 101
Andersen-Darling Test auf Weibull-Verteilung ... 111
χ²-Anpassungstest ... 111
Epps-Pulley Test ... 112
Jarque-Bera Test (JB) .. 113
Zusammenfassung der statistischen Tests auf Normalverteilung 114
Binomial-Test .. 114
Hypothetentests für Auswertungen .. 114
t-Test für zwei Stichproben .. 114
t-Test für Vergleich einer Stichprobe mit einem Vorgabewert 115
Mood’s Median Test ... 115
U-Test für zwei Stichproben ... 116
Vorzeichen-Test für eine Stichprobe .. 117
Vorzeichenrangtest nach Wilcoxon für eine Stichprobe .. 117
F-Test ... 117
Levene’s Test .. 118
Bartlett-Test ... 118
Steigungstest einer Regression .. 119
Ausreißer-Tests ... 120
Test auf einen Ausreißer nach Grubb .. 120
Test auf einen oder mehrere Ausreißer (Wölbungstest) .. 120
Ausreißer-Test nach David-Hartley-Pearson ... 120
Tests für diskrete Merkmale und Ereignisse .. 121
Binomial-Test .. 121
Poisson-Test .. 121
χ²-Homogenitätstest .. 122
χ²-Mehrfeldtest .. 124
Exakter Test nach Fisher ... 125
Übersicht über die Test-Statistiken .. 127
Die wichtigsten stetigen Verteilungen .. 128
Normalverteilung .. 128
Boxplot .. 130
Abweichungen von der Normalverteilung .. 131
Betragssnormalverteilung .. 132
Mehrparametrische Normalverteilung ... 132
5-parametrische Normalverteilung .. 133
Zensierte Normalverteilung ... 134
Lognormalverteilung ... 135
Weibull-Verteilung ... 137
Bestimmung der Weibull-Parameter .. 140
Vertrauensbereich der Weibull-Verteilung und -Parameter .. 141
Vertrauensbereiche über Fisher-Matrix ... 142
3-parametrische Weibull-Verteilung .. 143
4- und 5-parametrische Weibull-Verteilung ... 144
Weitere Ansätze für nicht lineare Verläufe im Weibull-Netz .. 147
Berücksichtigung noch nicht eingetretener Ausfälle Snedden Death 149
Auswertung von Daten schadhafter und nicht schadhafter Teile 151
Zensierte Weibull-Verteilung .. 152
Interval- und linkszensierte Daten .. 152
Felddatenauswertung – Anwärterprognose .. 154
Weitere wichtige Kenngrößen für Weibull & Zuverlässigkeit 156
Überblick der möglichen Fälle ... 156
Typische Weibull-Verläufe und mögliche Ursachen ... 158
Zuverlässigkeitsmethoden und Lebensdauer ... 159
Vergleich von 2 Verteilungen ... 159
Systemzuverlässigkeit bei mehreren Komponenten ... 160

Intervall- und linkszensierte Daten .. 152
Felddatenauswertung – Anwärterprognose .. 154
Weitere wichtige Kenngrößen für Weibull & Zuverlässigkeit 156
Überblick der möglichen Fälle ... 156
Typische Weibull-Verläufe und mögliche Ursachen ... 158
Zuverlässigkeitsmethoden und Lebensdauer ... 159
Vergleich von 2 Verteilungen ... 159
Systemzuverlässigkeit bei mehreren Komponenten ... 160
WEITERE STATISTISCHE VERTEILUNGEN ... 184
STICHWORTVERZEICHNIS ... 193
ANLAGE ... 191

L E B E N S D A U E R H O C H R E C H N U N G A U S V E R S C H L E Iß G R A D .. 171
Wöhlerdiagramm aus Weibullauswertung ableiten.. 174
Wöhler - Perlschnurverfahren.. 176
Bestimmung des Raffungsfaktors.. 177
T E M P E R U R E I N F L U S S AUF L E B E N S D A U E R ... 178
Das Arrhenius-Modell.. 178
Coffin-Manson-Modell und Inverse Power Law.. 179
S C H I C H T L I N I E N ... 180
Schichtlinien auf Basis des Produktionsdatums... 180

WEITERE STATISTISCHE VERTEILUNGEN ... 184
D I S K R E T E V E R T E I L U N G E N .. 184
Binomial... 184
Poisson... 185
Geometrisch... 186
Hypergeometrisch.. 186
S T E T I G E V E R T E I L U N G E N .. 187
Beta.. 187
Cauchy... 187
χ^2 (Chi²)... 187
Exponential... 188
Extrem... 188
Fisher... 188
Gamma... 188
Laplace... 189
Logistik... 189
Pareto... 189
Rayleigh... 189
Student- oder t-Verteilung.. 190

A N L A G E ... 191
L E I T F A D E N Z U R E R S T E L L U N G V O N T A B E L L E N .. 191
V E R W E N D E T E F O R M E L Z E I C H E N ... 192
S T I C H W O R T V E R Z E I C H N I S ... 193
VORWORT

Dieses Buch beinhaltet deshalb die wichtigsten statistischen Methoden und Verfahren einheitlich im Überblick. Viel Wert wurde daraufgelegt, die Begrifflichkeiten aus der Statistik für Techniker und Ingenieure verständlich darzustellen, auch wenn ein Grundmaß an Vorkenntnissen aus der Statistik vorausgesetzt wird.

Die Auswahl der Methoden, die Darstellungen, sowie die Beispiele hierfür haben einen hohen Praxisbezug. Hauptschwerpunkt ist die Automobilindustrie, die bei den Methoden oft eine Führerrolle innehat. Aber auch Problemstellungen anderer Bereiche, wie z.B. Anlagenbau, Hausgeräte, Medizintechnik etc., sind in dieses Buch eingeflossen. Von Vorteil ist, dass sich die spezifischen Methoden aus unterschiedlichen Branchen gegenseitig ergänzen.

Alle Methoden, Statistiken und Verfahren lassen sich mit der Software Visual-XSel durchführen.

Ausführliche weitere PDF-Dokumente mit Programmbeschreibung sind unter www.crgraph.de/sitemap zu finden.

2020

Curt Ronniger
Methodenübersicht für den DMAIC-Zyklus

<table>
<thead>
<tr>
<th>Methode</th>
<th>ab Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINE</td>
<td></td>
</tr>
<tr>
<td>Was ist das Problem?</td>
<td></td>
</tr>
<tr>
<td>Aufgabenblatt, Project Charter</td>
<td>*</td>
</tr>
<tr>
<td>Stakeholderanalyse</td>
<td>*</td>
</tr>
<tr>
<td>Kick-Off Meeting</td>
<td>*</td>
</tr>
<tr>
<td>Systemanalyse Ursachen-Wirkungsdiagramm</td>
<td>12</td>
</tr>
<tr>
<td>Quality Function Deployment (CTQ & VoC)</td>
<td>*</td>
</tr>
<tr>
<td>MEASURE</td>
<td></td>
</tr>
<tr>
<td>Messen der Auswirkungen.</td>
<td></td>
</tr>
<tr>
<td>Design-Scorecard (Parameter, Wertebereiche, Einheiten....)</td>
<td>*</td>
</tr>
<tr>
<td>Operationale Definition (was wird wann, wie und wo gemessen)</td>
<td>*</td>
</tr>
<tr>
<td>Mess-System-Analyse (MSA)</td>
<td>85</td>
</tr>
<tr>
<td>Stichprobenstrategie und -größe</td>
<td>107, 163</td>
</tr>
<tr>
<td>Stat. Kennwerte: Mittelwert, Standardabweichung, ...</td>
<td>128</td>
</tr>
<tr>
<td>Statistische Verteilungen und deren Kennwerte</td>
<td>128ff</td>
</tr>
<tr>
<td>Aktuelle Prozessfähigkeit bestimmen</td>
<td>84</td>
</tr>
<tr>
<td>ANALYSE</td>
<td></td>
</tr>
<tr>
<td>Ermittlung der Ursachen.</td>
<td></td>
</tr>
<tr>
<td>Grafische Darstellungen (Pareto, Ausgl.-Gerade, Box-Plot, ...)</td>
<td>16, 45, 130</td>
</tr>
<tr>
<td>Ursachen-Wirkdiagramm Erweiterungen/Ergänzungen</td>
<td>14</td>
</tr>
<tr>
<td>FMEA</td>
<td>*</td>
</tr>
<tr>
<td>Fehlerbaum</td>
<td>22</td>
</tr>
<tr>
<td>(Shainin-Methoden)</td>
<td>103</td>
</tr>
<tr>
<td>Hypothesentests</td>
<td>44ff</td>
</tr>
<tr>
<td>Einfache und multiple Regression historischer Daten</td>
<td>26</td>
</tr>
<tr>
<td>Design of Experiment (DoE) Einführung</td>
<td>44ff</td>
</tr>
<tr>
<td>Datenauswertung aus DoE</td>
<td>137ff</td>
</tr>
<tr>
<td>Lebensdauerversuche, Weibull mit bisherigem Stand</td>
<td></td>
</tr>
<tr>
<td>IMPROVE</td>
<td></td>
</tr>
<tr>
<td>Beseitigen des Problems.</td>
<td></td>
</tr>
<tr>
<td>Lösungen finden, optimale Varianten bestimmen</td>
<td>58</td>
</tr>
<tr>
<td>Design of Experiment (DoE), 2. Durchlauf, Bestätigung</td>
<td>26ff</td>
</tr>
<tr>
<td>Optimizer (Suche nach Bestpunkten aus Regressionsmodell)</td>
<td>56</td>
</tr>
<tr>
<td>Quality Function Deployment (Berücksichtigung der Fertigung)</td>
<td>*</td>
</tr>
<tr>
<td>Lebensdauerversuche, Weibull mit optimiertem Stand</td>
<td>137ff</td>
</tr>
<tr>
<td>CONTROL</td>
<td></td>
</tr>
<tr>
<td>Stabilität und Nachhaltigkeit sicherstellen</td>
<td></td>
</tr>
<tr>
<td>Maschinen- und Prozessfähigkeit</td>
<td>84</td>
</tr>
<tr>
<td>Prozessüberwachung, Regelkarten bzw. SPC</td>
<td>99</td>
</tr>
<tr>
<td>Stichprobenüberwachung</td>
<td>163</td>
</tr>
<tr>
<td>Datenauswertung Prozessdaten (z.B. Regressionen, etc.)</td>
<td>44</td>
</tr>
<tr>
<td>Prozessdokumentation und Projektabschluss</td>
<td>*</td>
</tr>
</tbody>
</table>

Statistische Betrachtung von Six Sigma

Wie Eingangs beschrieben, ist \(\sigma \) das Maß der Streuung eines Produktes oder eines Pro- zesses (im industriellen Kontext die Resultate Qualitätshandlungen). Ein \(\sigma \)-Wert von 1.5 steht für eine hohe Prozessreife und entspricht etwa 4 Sigma für Prozesse. Der Six Sigma Ansatz zielt auf die Reduzierung von Fehlerquellen in Prozessen. **Siehe hierzu auch Kapitel Statistische Verteilungen - Normalverteilung.**

* Grau markierte Themen werden hier nicht behandelt ⇒ Verweis auf Six Sigma Literatur.
Systemanalyse und Verfahren zur Parameterauswahl

Einführung

Eine Systemanalyse ist eine systematische Untersuchung von „Elementen“ die in Beziehung zueinander stehen (Kurzfassung aus Definition Duden).

Unter dem Begriff Systemanalyse verbergen sich eine Vielzahl von Methoden und Darstellungen. Im Rahmen dieser Beschreibungen sollen einschränkend die Bausteine betrachtet werden, die für eine spätere Untersuchung wichtig sind, insbesondere für die Erstellung von Versuchsplänen.

Man unterscheidet grundsätzlich zwischen grafischen Verfahren und Matrix-Strukturen, die teilweise auch ineinander übergehen. Das Ziel ist es, durch Abschätzung den wirklichen Beziehungen so nahe wie möglich zu kommen. Die wichtigsten Methoden zeigt folgendes Bild:

Im Fehlerbeseitigungsprozess verwendet man am häufigsten die „Tools“ Ishikawa, Wirkdiagramm und Fehlerbaum (Grundlage hierfür kann eine bereits vorhandene FMEA sein).

Im Folgenden wird das Ursachen-Wirkungsdiagramm behandelt.
Ursachen-Wirkungsdiagramm nach Ishikawa

Das Ziel ist die systematische Darstellung von Zusammenhängen. Der Einsatz ist meist in der Problemlösung anzufinden.

1. Definition des zu untersuchenden Ziels oder des Problems
3. Einflussgrößen in einer Arbeitsgruppe bestimmen und eintragen

Beispiel für ein 5M Diagramm: Darstellung von Einflüssen auf die Messunsicherheit.

Diese Methode ist ursprünglich rein linear aufgebaut, was oft als Nachteil genannt wird. Man kann aber hier abhängige physikalische Größen dazwischen einbeziehen und gegenseitige Abhängigkeiten durch entsprechende Querverbindungen aufbauen.
Erweitertes Ursachen-Wirkungsdiagramm

In dieser Darstellung, abgekürzt auch als Wirkdiagramm bezeichnet, wird das Problem in die Mitte gestellt (problemorientierte Form). Es ist aber auch eine funktionsorientierte Darstellung möglich.

Im folgenden Beispiel soll der Verschleiß des Kommutators und der Kohlebürsten eines Elektromotors behandelt werden (vereinfachte Prinzip-Darstellung, problemorientiert):

Verwendet man hier anstelle der Bauteile physikalische, oder technische Begriffe für die Ursachen von Verschleiß, so entsteht folgende mögliche Darstellung:

Einbeziehung von Abhängigkeiten (Querbeziehungen)

Bei näherer Betrachtung der vorhergehenden Struktur wird schnell klar, dass es „Querbeziehungen“, bzw. weitere Abhängigkeiten gibt. Der Widerstand ist von der Temperatur und die Eigenerwärmung von der Reibung abhängig, usw.

Zu beachten ist hier der Unterschied zwischen (Quer-)Wirkungen und Wechselwirkungen! Im Gegensatz zu einer (Quer-)Wirkung zwischen zwei Parametern beeinflusst eine Wechselwirkung die Zielgröße (hier Verschleiß). Eine Wechselwirkung liegt vor, wenn sich bei Variation von 2 Parametern die Zielgröße mehr verändert, als durch die Summe der Einzeleffekte (Getrennte Änderung der Zielgröße je Parameter). Dabei muss nicht eine (Quer-)Wirkung der Parameter gegeben sein. Im Wirkdiagramm ist eine Wechselwirkung nicht erkennbar, bzw. ist grafisch nicht darstellbar.
Je nach Anzahl der Querverbindungen ergibt sich eine mehr oder weniger starke Vernetzung. Die Querverbindungen sollten deshalb grau dargestellt werden, damit die Übersichtlichkeit nicht leidet.

Die Ursachen-Wirkungskette ist sehr gut ersichtlich, z.B. erzeugt die Feder eine Anpresskraft und diese wiederum eine Reibung. Eine Ausnahme sind reine Auflistungspfade, wie Material oder konstruktive Merkmale.

Eine weitere Verbesserung der Analyse ergibt sich aus der Bewertung der Wirkstärken. Werden diese noch durch unterschiedliche Strichstärken der Äste hervorgehoben, entsteht eine noch bessere Darstellung der Zusammenhänge (siehe Bild oben).

Die Wirkstärken, auch für die Querverbindungen, werden in den Bewertungen 1,2,3 und 5 gestaffelt (siehe nachfolgendes Kapitel Intensitäts-Beziehungsmatrix). Damit kann später eine Pareto-Auswertung gemacht werden, um die wichtigsten Einflüsse zu bestimmen. Das Ranking der Einflüsse wird dabei auch wesentlich durch die Bewertung der Querverbindungen bestimmt. Eine Staffelung der Bewertung von 1, 3 oder 9 ist deshalb nicht zu empfehlen, da die 9 alle anderen Bewertungen in den „Hintergrund“ stellen würde.

Hinweis:

Die Bewertung der außenliegenden Einflüsse sollte nicht größere Werte haben, als die der „inneren Wirkäste“. In diesem Beispiel hat die Reibung den Wert 3. Dann ist es nicht richtig dem Reibwert und dem Medium eine 5 zu geben. Das würde die Bedeutung dieser Einflüsse im Gesamtzusammenhang zu hoch setzen, denn die Reibung hat auf den Verschleiß maximal nur die 3 „vererbt“.
Versuchsplanung (Design of Experiment – DoE)

Einführung

\[y = a \cdot \omega + b \cdot \omega^2 + \ldots + \text{konst} \]

Der weitere Kurvenverlauf ist aber danach nicht mehr gültig. Ein Extrapolieren würde falsche Ergebnisse liefern. Dieses Problem ist allzu oft der Grund für das Scheitern einer DoE.

![Diagramm der Versuchsplanung (Design of Experiment – DoE)]
Vollfaktorieller Versuchsplan

Ein vollfaktorieller Versuchsplan entsteht, wenn alle möglichen Einstellungen der Faktoren miteinander kombiniert werden. Die Anzahl der hierfür benötigten Versuche ist mit \(p=\text{Anzahl der Faktoren und je zwei Einstellungen} \) \(n = 2^p \)

Bei 3 Faktoren ergeben sich also 8 Versuche. Allgemein erstellt man einen vollfaktoriellen Plan (normiert -1 und 1) einfach auf folgende Weise: Beginnend in der ersten Spalte wird alternierend -1, 1, -1 usw. geschrieben. In der nächsten Spalte schreibt man mit doppelter Häufigkeit alternierend -1,-1, 1, 1,-1,-1 usw. In der dritten Spalte wiederum mit doppelter Häufigkeit, wie in der vorhergehenden, bis alle Faktoren belegt sind. Der Versuchsplan lässt sich einfach durch die Tabellenfunktion

\[(-1)^{\text{AUFRUNDEN(ZEILE())}/2^*(\text{SPALTE()}-1);0} \]

erzeugen (Formel in A1 eingeben und mit der Maus bei gedrückter Strg-Taste über den Bereich ziehen). Der Vorteil des vollständigen Versuchsplans ist, dass sich alle Wechselwirkungen WW erklären lassen. So ist die 3-fach-\(\text{WW} \) \(\text{A}^*\text{B}^*\text{C} \) ebenso enthalten. Die Anzahl der Versuche nimmt mit der Anzahl der Faktoren jedoch schnell sehr stark zu, so dass ab ca. 5 Faktoren der Versuchsplan in der Praxis zu aufwendig wird. Es stellt sich die Frage, wie man ihn vereinfachen kann. Die 3-fach-\(\text{WW} \) haben in den meisten Fällen einen nur untergeordneten Einfluss. Verzichtet man auf diese Aussage, so kann man anstelle der Versuche zur Bestimmung von \(\text{A}^*\text{B}^*\text{C} \) ein weiterer Faktor verwendet werden und man erhält einen teilfaktoriellen Versuchsplan (fraktional faktoriell).

Vor- und Nachteile der vollfaktoriellen Versuchspläne
+ Orthogonale Versuchsanordnung mit allen Wechselwirkungen (auch 3-fach, etc.)
+ Absolut beste Auswertbarkeit.
- Zu großer Aufwand bei Anzahl der Parameter > 4.
Teilfaktorielle Versuchspläne

Wie vorher beschrieben, wird also die letzte „Informationsspalte“ nicht für die 3-fach-WW genutzt, sondern für einen neuen Faktor D. Allgemein werden die letzten oder der letzte Faktor durch das Produkt der vorhergehenden Spalten (Faktoren) gebildet. Im folgenden Beispiel ergibt sich die Spalte D durch die Multiplikation von $A^*B^*C \Rightarrow 2^{1-1}$.

Die Anzahl der Versuche berechnet sich durch: $n = 2^{p-q}$. Man bildet diesen Versuchsplan zunächst wie den vollfaktoriellen, jedoch mit q Faktoren weniger. Die Einstellungen der fehlenden Faktoren werden durch das Produkt aller vorhergehenden Spalten gebildet. Diese nennt man auch Generatoren. Auf einen Blick gibt es bis 12 Faktoren folgende Übersicht:

<table>
<thead>
<tr>
<th>n</th>
<th>p</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>2^3</td>
<td>vollst.</td>
<td>2^4</td>
<td>2^5</td>
<td>2^6</td>
<td>2^7</td>
<td>2^8</td>
<td>2^9</td>
<td>2^{10}</td>
<td>2^{11}</td>
<td>2^{12}</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2^3</td>
<td>vollst.</td>
<td>2^4</td>
<td>2^5</td>
<td>2^6</td>
<td>2^7</td>
<td>2^8</td>
<td>2^9</td>
<td>2^{10}</td>
<td>2^{11}</td>
<td>2^{12}</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>2^4</td>
<td>vollst.</td>
<td>2^5</td>
<td>2^6</td>
<td>2^7</td>
<td>2^8</td>
<td>2^9</td>
<td>2^{10}</td>
<td>2^{11}</td>
<td>2^{12}</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>2^5</td>
<td>vollst.</td>
<td>2^6</td>
<td>2^7</td>
<td>2^8</td>
<td>2^9</td>
<td>2^{10}</td>
<td>2^{11}</td>
<td>2^{12}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>2^6</td>
<td>vollst.</td>
<td>2^7</td>
<td>2^8</td>
<td>2^9</td>
<td>2^{10}</td>
<td>2^{11}</td>
<td>2^{12}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>2^7</td>
<td>vollst.</td>
<td>2^8</td>
<td>2^9</td>
<td>2^{10}</td>
<td>2^{11}</td>
<td>2^{12}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vollständige Pläne → alle Wechselwirkungen
Fraktionelle Pläne $V+$ → alle 2-fach-WW bestimmbar, Auflösung $\geq V$
Fraktionelle Pläne IV → 2-fach-WW. vermengt, Haupeff. vermengt mit 3-fach-WW
Fraktionelle Pläne III → 2-fach-WW. vermengt, Haupeff. vermengt mit 2-fach-WW

Definitive Screening Designs DSD

In der generischen Erzeugung dieser Versuchspläne (iterativ mit Hilfe der Determinante) ergibt sich regulär die Anzahl Versuche mit \(n = 2^p + 2 \). Manche Pläne, z.B. für \(p = 5 \) sind dann allerdings teilweise zwischen den Hauptfaktoren vermengt. Hier müssen bis zu 3 Versuchszeilen ergänzt werden. Der Gesamtumfang ergibt sich somit zu:

\[
 n = 2^p + 2 + (1 \ldots 3)
\]

Vor- und Nachteile:

+ Orthogonale Versuchsanordnung mit extrem wenigen Versuchsdurchläufen.
+ Auswertung quadratischer Modelle möglich.
+ Möglichkeit zu Auswertung von einigen Wechselwirkungen (WW).
- Nicht alle möglichen WW darstellbar.
- Keine kategorialen Faktoren darstellbar.

D-Optimale Versuchspläne

Grundsätzliches

Mit \(p = \text{Anzahl Faktoren} \) berechnet sich die Anzahl der einfachen Wechselwirkungen:

\[
 p' = p^*(p-1)/2
\]
Die höheren Wechselwirkungen (z.B. ABC, ABD, ACD, usw.) werden in der Regel nicht berücksichtigt, da ihr Einfluss gegenüber den einfachen meist geringer ist. Sie würden auch den Umfang der Versuche sprengen.

Insgesamt wird für einen Versuchsplan mit zwei Einstellungen folgende Anzahl Versuche benötigt:

\[
\begin{align*}
\text{Konstante} & : 1 \\
\text{Haupeffekte (Faktoren)} & : p \\
\text{Wechselwirkungen} & : p*(p-1)/2 \\
\Sigma & : p+ p*(p-1)/2+1
\end{align*}
\]

Im Falle eines quadratischen Modells kommen noch einmal \(p \) Versuche hinzu (mit mittlerer Einstellung). Weiterhin werden ca. 3-5 Versuche benötigt, um genügend Information über die Streuungen zu erhalten (Signifikanzen der Faktoren).

Ein D-Optimaler Plan wird nicht mit einem festen Schema generiert, sondern iterativ aufgebaut. Er hat u.a. folgende wichtige Eigenschaften:

- Maximierung der Determinante \(Det(X^T X) \) (Kennzahl für Auswertbarkeit)
- Minimierung der Korrelationen und Vertrauensbereiche
- Möglichst gute Ausbalancierung, d.h. gleiche Anzahl von Stufen (gilt nur für Randbereiche -1 und +1, nicht für Zwischenwerte)

Insbesondere aufgrund der Zielsetzung, dass alle Wechselwirkungen bei geringer Versuchsanzahl erkannt werden sollen, verhindert dass diese Pläne vollständig orthogonal sind. D.h. gewisse Korrelationen lassen sich nicht vollständig beseitigen. In der Auswertung über Multiple Regression ist dies jedoch ein untergeordneter Nachteil.

Vorteile- und Nachteile der D-optimalen Versuchspläne

+ Freie Wahl für die Zahl der Stufen pro Einflussfaktor. Die Stufenzahl kann von Faktor zu Faktor unterschiedlich gewählt werden.
+ Freie Wahl der Stufenabstände, die äquidistant oder nicht äquidistant gewählt werden können.
+ Freie Wahl des mathematischen Modells
+ Erweiterungsmöglichkeit durch neue Einflussfaktoren
+ Bestimmte Einstellungen und Kombinationen können ausgeschlossen werden, die nicht erreichbar sind (siehe Beispiel einer Drehmomentkurve)
- Der Versuchsplan ist nicht orthogonal, die Abweichungen sind aber meist nur klein
- Die Erstellung der Pläne ist nur mit entsprechenden Rechenalgorithmen möglich.

Hinweis: Der dargestellte „Grundversuchsplan“ zur Bestimmung der Faktoren und
Mit Hilfe des t-Tests kann die Nullhypothese x und y sind voneinander unabhängig, geprüft werden. Die Prüfgröße für Daten ist:

$$t_{pr} = -\frac{r_{xy}}{\sqrt{1-r_{xy}^2}} \sqrt{n-2}$$

Die Nullhypothese auf Unabhängigkeit wird verworfen, wenn $|t_{pr}| > t_{n-2,1-\alpha / 2}$.

Der Nachteil dieses Korrelationskoeffizienten ist, dass Ausreißer starken Einfluss haben. Ein vorheriger Test auf Normalverteilung ist deshalb zu empfehlen.

Rangkorrelation nach Spearman

Sind die Daten stark nicht normal verteilt, oder haben kategoriale Ausprägungen, so ist die so genannte Rangkorrelation anzuwenden. Statt der eigentlichen Werte von x und y werden hier deren Rangzahlen R verwendet. Ist beispielsweise $x = [5;2;7;4]$, so ist $R_{x=5} = 3$, nachdem die Datenreihe aufsteigend sortiert wurde. Der Spearmansche Rangkorrelationskoeffizient wird berechnet durch:

$$r_s = 1 - \frac{6 \sum (R(x_i) - R(y_i))^2}{n(n^2 - 1)}$$

Das Bestimmtheitsmaß R^2 ist das Quadrat des Korrelationskoeffizienten und drückt den Zusammenhang prozentual aus (R hier nicht verwechseln mit Rang).

Regression

Mit Hilfe der Regression wird auf Basis kleinster Fehlerquadrate eine bestmögliche Anpassung einer beliebigen Funktion an Datenpunkte ermöglicht. Im einfachsten Fall ist die Funktion eine Ausgleichsgerade. Während die Korrelation nur den Zusammenhang zwischen x und y beschreibt, ermittelt man in der Regression wie stark der Einfluss von x auf y ist. Dies soll folgendes Beispiel verdeutlichen. Eine Auswertung von verschiedenen Fahrzeugen soll den Einfluss des Fahrzeuggewichtes auf den Verbrauch zeigen:

![Graphik der Regression](image-url)
Verwendet wird hier eine einfache Ausgleichsgerade, definiert durch:

\[\hat{y} = a + bx \]

\(x\) : unabhängige Einflussgröße
\(\hat{y}\) : Schätzwert für die abhängige Zielgröße
\(a\) : Schnittpunkt der Geraden durch die Y-Achse bei \(x=0\)
\(b\) : Steigung der Geraden:

Es zeigt sich hier, aufgrund der Steigung, dass das Fahrzeuggewicht einen großen Einfluss auf den Verbrauch hat, obwohl der Zusammenhang mit \(R^2 = 0,545\) nur schwach ist. Hinweis: Der Wert von \(b = 0,0086\) erscheint zahlenmäßig gering, was daran liegt, dass die Einheit im x-Bereich 4stellig ist.

Im Bild ist ein zusätzlicher Vertrauensbereich zu sehen, der die „Präzision“ der Funktion ausdrückt. In der Regel wird ein Vertrauensniveau von 90% oder 95% verwendet. Ver einfacht kann man die Punkte außerhalb des Vertrauensbereiches als „schwache Ausreißer“ betrachten (nicht zu verwechseln mit klassischen Ausreißertests). Für einen bestimmten Punkt \(x_i\) wird der untere und obere Vertrauensbereich berechnet durch:

\[y_u = a + bx_i - C \quad y_o = a + bx_i + C \]

mit

\[C = s \cdot t_{n-2,1-\gamma/2} \cdot \sqrt{\frac{1}{n} + \frac{(\bar{x} - x_i)^2}{\sum_{j=1}^{n}(x_j - \bar{x})^2}} \]

und der Standardabweichung

\[s^2 = \sum_{i=1}^{n}(y_j - (a + bx_j))^2 \]

Multiple Regression

Die Abweichungen im vorherigen Beispiel resultieren daraus, dass es noch eine Reihe weiterer Einflüsse gibt, die nicht berücksichtigt wurden.

In der Multiplen Regression kann das Modell um praktisch beliebig zusätzliche \(x\) erweitert werden. Weitere Einflüsse aus dem vorherigen Beispiel sind z.B. die Motorleistung und der Luftwiderstand:

\[\hat{y} = b_o + b_1 \cdot x_1 + b_2 \cdot x_2 + b_3 \cdot x_3 \ldots \quad (b_o = \text{Konstante}) \]

Beispiel Kraftstoffverbrauch:

\(x_3\) = Luftwiderstand
\(x_2\) = Leistung
\(x_1\) = Gewicht
\(y\) = Verbrauch

Hinweis: Anstelle von \(a\) wird hier \(b_o\) verwendet. Die Koeffizienten \(b\) werden auch hier über die Methode der kleinsten Fehlerquadrate bestimmt.

Weiterhin kann das Modell um quadratische Ansätze erweitert werden, um nichtlineare Zusammenhänge zu beschreiben (bekanntlich nimmt der Luftwiderstand im Quadrat zu):
Gibt es Wechselwirkungen, so ist das Modell um die Produkte der Einflüsse zu erweitern:

\[\hat{y} = b_0 + b_1 \cdot x_1 + b_2 \cdot x_2 + b_{12} \cdot x_1 \cdot x_2 \]

(der Verbrauch steigt bei gleichzeitiger Veränderung von Gewicht und Leistung überproportional mehr, als die einzelnen Einflüsse für sich).

In Matrizenform schreibt man die Modellgleichung:

\[
\hat{y} = X b
\]

\[
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix} =
\begin{bmatrix}
1 & x_{11} & x_{21} & \ldots & x_{11}^2 & x_{21}^2 & x_{11} \cdot x_{21} & x_{11} \cdot x_{31} \\
1 & x_{12} & x_{22} & \ldots & \ldots & \ldots & \ldots & \ldots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{1n} & x_{2n} & \ldots & x_{1n}^2 & x_{2n}^2 & x_{1n} \cdot x_{2n} & x_{1n} \cdot x_{3n}
\end{bmatrix} b =
\begin{bmatrix}
b_o \\
b_1 \\
\vdots \\
b_z
\end{bmatrix}
\]

Hinweis: 1. Spalte in \(X \) steht für konstanten Anteil zur Bestimmung von \(b_o \)

Der gesuchte Vektor \(b \) mit den Koeffizienten bestimmt über die Matrizen-Operation:

\[
b = \left(X^T X\right)^{-1} X^T y
\]

Grafische Darstellung des Modells im Kurvendiagramm

Anstelle der reinen Modellgleichung ist das sogenannte Kurvendiagramm die beste Darstellungsform der Ergebnisse. Im folgenden Beispiel geht es um die Beschleunigung eines Schwingsystems mit den Einflüssen von Steifigkeiten und Dämpfungen.

In diesem Kurvendiagramm lassen sich sofort für jede Einstellung die Zielgrößen ablesen (gestrichelten Linien). Je stärker ein Einflussfaktor ist, desto steeper ist der Verlauf. Als Effekt bezeichnet man innerhalb der Einstellungsgrenzen die Änderung der Zielgröße (Vertrauensbereich siehe späteres Kapitel *Vertrauensbereich für die Zielgröße*).
Grafische Darstellung der Wechselwirkung

Eine Wechselwirkung verursacht eine stärkere Veränderung der Zielgröße, als die Einflüsse der einzelnen Faktoren in Summe. Wechselwirkungen haben physikalische Ursachen:

Analog zum Kurvendiagramm lassen Wechselwirkung auch als Kurvenpaare darstellen. Für jeden Faktor mit einer Wechselwirkung gibt es 2 Kurvenpaare.
Verlaufen die Steigungen der Kurvenpaare mehr und mehr unterschiedlich steil, umso höher ist der Einfluss der Wechselwirkung. Der Höhenunterschied der Kurven ist lediglich der Effekt des Faktors, der der Wechselwirkungspartner ist.

Residuen

Die „Güte“ eines Modells kann auch dargestellt werden, indem man die jeweiligen Rechenwerte (Funktionswerte) über die beobachteten Werte \(\hat{y}_i \) aufträgt. Bezogen auf die tabellarischen Daten bedeutet dies, dass man für jede Zeile die Merkmale \(x \) in das Modell einigt und \(\hat{y}_i \) berechnet. Dabei wird dieser Rechenwert \(\hat{y}_i \) (Modellwert) von dem Wert der Beobachtung (Messwert) \(y_i \) in der Tabelle mehr oder weniger abweichen. Diese Abweichungen stellen die so genannten Residuen dar.
Diskrete Regressionsanalyse

Wenn weiterhin nur ein Unterscheiden auf 2 Stufen (gut/schlecht, schwarz/weiß, 0/1, usw.) möglich ist, kann man die folgende Vorgehensweise anwenden. Gegeben sei folgender Zusammenhang,

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
 x & 0,5 & 0,7 & 1 & 1,3 & 1,5 & 2 & 2,2 & 2,3 & 2,7 & 3 & 3,2 & 3,4 \\
 y & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
\end{array}
\]

der zu der nicht befriedigenden folgenden Regression führt (Ausgleichsgerade):

\[
y = 0,01791835 + 0,24306638 \cdot x \quad r = 0,459
\]

Sinnvoller ist es hier, statt der direkten Darstellung der Zielgröße, die Wahrscheinlichkeiten, dass ein „Zustand“ eintritt, darzustellen. Hierzu fasst man x-Bereiche zusammenfassen (Klassierung) um auf „zählbare Ereignisse“ zu kommen. Die Tabelle wird dann zu:

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
 x \text{ (Originalwerte)} & 0,5 & 0,7 & 1 & 1,3 & 1,5 & 2 & 2,2 & 2,3 & 2,7 & 3 & 3,2 & 3,4 \\
 x-\text{Gruppe (klassiert)} & 1,0 & 2,0 & 3,0 \\
 y & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
 n_i = \text{Anzahl (y=1)} & 1 & 2 & 3 \\
 \text{Anz./Gruppengröße} & 1/4 = 0,25 & 2/4 = 0,5 & 3/4 = 0,75 \\
\end{array}
\]

Die x-Werte werden den Gruppen 1, 2 und 3 zugeordnet (entsprechend einer mittigen Klassierung, hier auf ganze Zahlen). Innerhalb dieser Gruppen wird nun die Anzahl y=1 gezählt (bei Begriffen, wie „gut“ und „schlecht“ ist festzulegen, auf was sich das Zählen
bezieht, z.B. auf „schlecht“). Hieraus lassen sich die relativen Häufigkeiten pro Gruppe errechnen. Stellt man diese dar, so ergibt sich eine erheblich bessere Beziehung:

\[
y = 0 + 0.25 \cdot x \quad r = 1.000
\]

Erkauft wird dies durch eine Reduktion der \(x\)-Informationen, d.h. für diese Auswertung werden deutlich mehr Beobachtungen gebraucht, als bei stetigen Messgrößen. In dem vorherigen Beispiel stehen anstelle der ursprünglich 12 Informationen nur noch 3 zur Verfügung, was ein entsprechender Nachteil ist. Unter Umständen stehen bei der Auswertung zu wenig Freiheitsgrade zur Bestimmung von möglichen Wechselwirkungen zur Verfügung. Da es sich hier meist aber um reine Beobachtungen handelt (nicht um geplante Versuche), liegen in der Regel auch ausreichende Daten vor.

Die Bildung der relativen Häufigkeiten sind gleichzeitig Schätzer für die Wahrscheinlichkeit \(p\), dass \(y = 1\) wird. Es gilt, wie bereits im Beispiel verwendet (letzte Zeile):

\[
p_i = \frac{n_i}{n_\text{Gruppe}} \quad n_i : \text{Anzahl } y = 1, \text{ darf nicht 0 sein; Faustwert für } n_\text{Gruppe} \geq 5
\]

Für \(n_i < 0\) und \(n_i > 4\) ergeben sich allerdings unsinnige Wahrscheinlichkeiten von \(p < 0\) und \(p > 1\). Deshalb sind geeignete Transformationen notwendig, wie z.B. durch die Arcus-Sinus-Funktion. Bevor man zu der eigentlichen Regressionsanalyse geht, werden die relativen Häufigkeiten über folgende allgemeine Beziehung umgerechnet.

\[
y' = \frac{2}{\pi} \text{ArcSin} (\sqrt{p})
\]

Danach wird das Regressionsmodell gebildet. Bei der Prognose von Wahrscheinlichkeiten aus dem gefundenen Modell wird über die Umkehrfunktion

\[
\hat{p} = \sin \left(\frac{\pi}{2} \hat{y} \right)^2
\]

wieder auf Wahrscheinlichkeiten umgerechnet, wobei sichergestellt ist, dass Werte \(< 0\) und \(> 1\) nicht entstehen (\(\hat{p}\) steht hier für den Schätzer der Wahrscheinlichkeit aus dem Regressionsmodell). Diese Art der Transformation wird insbesondere im Taschenbuch Versuchsplanung, Kleppmann empfohlen.
Fähigkeitskennzahlen

Fähigkeitskennzahlen dienen zur Beschreibung der aktuellen, sowie der zukünftig zu erwartenden, Leistung eines Prozesses.

Allgemein versteht man unter einer Fähigkeitskennzahl das Verhältnis aus Toleranz zur Streuung des Prozesses. Dabei bezieht man sich auf einen Bereich, bei dem 99,73% innerhalb der Spezifikation liegen (±3σ bzw. ±3s). Im Falle eines Herstellungsprozesses handelt es sich um die Prozessfähigkeit \(C_p \). Zur Berücksichtigung einer Mittelwertverschiebung (Abweichung von der idealen Prozesslage), wird der Wert \(C_{pk} \) eingeführt, der immer schlechter oder gleich groß ist wie \(C_p \) (\(C_{pk} \leq C_p \)). In der Regel gilt ein Prozess als fähig, wenn \(C_{pk} \geq 1,33 \) ist.

Im folgendem werden für verschiedene Verteilungsformen die Beziehungen dargestellt:

Normalverteilung

Die Normalverteilung ist anzuwenden, wenn Abweichungen vom Sollwert durch zufällige Einflüsse vorliegen, die additiv wirken.

\[
C_p = \frac{OSG - USG}{6s} = \frac{T}{6s}
\]

mit

- \(USG \): untere Toleranzgrenze
- \(OSG \): obere Toleranzgrenze
- \(T \): Toleranz = \(OSG - USG \)
- \(\mu \): Mittelwert

\[
C_{pu} = \frac{\bar{x} - UTG}{3s}
\quad C_{po} = \frac{OTG - \bar{x}}{3s}
\]

\[
C_{pk} = \min \left(C_{pu}; C_{po} \right)
\]

Ist der tatsächliche Mittelwert und die Standardabweichung bekannt, so ist \(\mu \) und \(\sigma \) anstelle von \(\bar{x} \) und \(s \) einzusetzen. Der \(C_{pk} \)-Wert kann über

\[
C_{pk} = C_p \left(1 - \frac{|z|}{\sigma} \right)
\]

berechnet werden, mit

\[
z = \frac{\bar{x} - (OSG + USG)/2}{(OSG - USG)/2}
\]

für mittigen Sollwert

\[
z = \frac{x_{soll} - \bar{x}}{(OSG - USG)/2}
\]

für nicht mittigen Sollwert

Beispiele:

\[
C_p = 1,33 \quad C_{pu} = 1,33 \quad C_{po} = 1,33 \quad C_{pk} = 1,33
\]

\[
C_p = 1,33 \quad C_{pu} = 2,0 \quad C_{po} = 0,67 \quad C_{pk} = 0,67
\]
Siehe auch Kapitel: \textit{Die wichtigsten stetigen Verteilungen – Normalverteilung.}
Der Vertrauensbereich ist definiert über:

\[C_p = C_p \left(1 \pm \sqrt{\frac{\chi^2_{1-\alpha/2, v}}{n-1}} \right) \quad \text{mit} \quad v = n-1 \]

\[C_{pk} = C_{pk} \left(1 \pm \frac{u_{1-\alpha/2}}{2 (n-1)} + \frac{1}{c_{pk}^2 n} \right) \]

\textbf{Lognormalverteilung}

Die Lognormalverteilung ist anzuwenden, wenn die Verteilung links einseitig begrenzt ist, nur positive Werte vorkommen und Abweichungen vom Sollwert durch zufällige Einflüsse entstehen, die multiplikativ wirken.

\[C_p = \frac{\ln(OSG) - \ln(USG)}{6 s_{\log}} \]

\[C_{po} = \frac{\ln(OSG) - \bar{x}_{\log}}{3 s_{\log}} \]

\[C_{pk} = \text{Min} \left(C_{po} ; C_{po} \right) \]

\[\bar{x}_{\log} = \frac{1}{n} \sum_{i=1}^{n} \ln(x_i) \]

\[s_{\log} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(\ln(x_i) - \bar{x}_{\log} \right)^2} \]

Liegen die Einzelwerte nicht vor, so kann näherungsweise \(x_{\log} \) und \(s_{\log} \) aus dem Mittelwert und der Standardabweichung der Normalverteilung mit

\[\bar{x}_{\log} \approx \ln(\bar{x}) - \frac{1}{2} \ln \left(1 + \frac{s^2}{\bar{x}^2} \right) \]

\[s_{\log} \approx \ln \left(1 + \frac{s^2}{\bar{x}^2} \right) \]

berechnet werden.

\textbf{Betragssverteilung 1. Art}

Diese ist anzuwenden wie bei der Normalverteilung, jedoch wenn die Verteilung einseitig begrenzt ist und nur positive Werte vorkommen können. Der Fähigkeitsindex wird über eine allgemeingültige Formel berechnet:

\[C_{pk} = \frac{1}{3} u_{1-p} \]

\(p \) = Anteil außerhalb der oberen Spezifikationsgrenze und \(u \) die Verteilungsform der standardisierten Normalverteilung.

Anstelle dieser Beziehung kann auch die weiter unten beschriebene Percentil-Methode verwendet werden, was bei kleinen Überschreitungsanteilen \(p \) sinnvoll ist.
Betragverteilung 2. Art (Rayleigh-Verteilung)
Die Anwendung dieser Verteilungsart ist z.B. für eine Unwucht, oder für Merkmale aus zwei Komponenten. Auch hier gilt die allgemeine Formel:

\[C_{pk} = \frac{1}{3} u_{1-p} \quad \text{speziell für Unwucht} \quad p = e^{\frac{\pi}{4} \left(\frac{O SG}{\mu_r} \right)^2} \]

Verteilungsfreie Percentil-Methode
Bei nicht bekannter Verteilung ist die so genannte Percentil-Methode zu verwenden. Allgemein gilt:

\[C_p = \frac{O SG - U SG}{X_{99,865\%} - X_{0,135\%}} \]

Für eine Normalverteilung entspricht der Nenner 6s. Für eine nicht normal verteilte Form kann der Bezugsbereich ermittelt werden, wie in der ISO/TR 12783 beschrieben.

Analog zur Normalverteilung gilt:

\[C_{pu} = \frac{X_{50\%} - U SG}{X_{50\%} - X_{0,135\%}} \quad \text{und} \quad C_{po} = \frac{O SG - X_{50\%}}{X_{99,865\%} - X_{50\%}} \]

\[C_{pk} = \text{Min} \left(C_{pu} ; C_{po} \right) \]

Verteilungsformen verschiedener Konstruktionsmerkmale
Die folgende Tabelle zeigt eine Übersicht, für welche Konstruktionsmerkmale welche Verteilung vorkommt:

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Symbol</th>
<th>Verteilg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Längenmaß</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Geradheit</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Ebenheit</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Rundheit</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Zylinderform</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Linienform</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Flächenform</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Rauheit</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Unwucht</td>
<td>B2</td>
<td></td>
</tr>
<tr>
<td>Parallelität</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Rechtwinkelk.</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Neigung / Winkelk.</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td>B2</td>
<td></td>
</tr>
<tr>
<td>Koaxialität, Konzentrizität</td>
<td>B2</td>
<td></td>
</tr>
<tr>
<td>Symmetrie</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Rundlauf</td>
<td>B1/B2</td>
<td></td>
</tr>
<tr>
<td>Planlauf</td>
<td>B1, LN</td>
<td></td>
</tr>
</tbody>
</table>

Siehe auch Kapitel: *Die wichtigsten stetigen Verteilungen.*
Übersicht der wichtigsten Verteilungen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Param.</td>
<td>2-parametrisch (Gauß-Standard)</td>
<td>Negative Anteile werden bei x=0 gespiegelt</td>
<td>entspricht Weibull-Verteilung mit b=2</td>
<td>2-parametrisch</td>
<td>2-, oder 3-parametrisch</td>
<td>Nur 3-fach Mischverteilung auf Basis anteiliger Normalverteilung zulässig</td>
</tr>
<tr>
<td>Berechnung</td>
<td>Berechnung analytisch über (\mu + \sigma)</td>
<td>Berechnung analytisch mit Faltung (\Leftrightarrow 0)</td>
<td>Berechnung über Least-Square (\Delta y)</td>
<td>Berechnung über analytisch über Median & Streufaktor</td>
<td>Berechnung über Least-Square (\Delta y)</td>
<td>Berechnung analytisch, Perzentilmethod</td>
</tr>
<tr>
<td>Formel</td>
<td>(C_p = \frac{OSG - USG}{6\sigma})</td>
<td>(C_{pp} = MDI \left(\frac{X_{10%} - USG}{X_{90%} - X_{11.5%}} ; \frac{OSG - X_{10%}}{X_{90%} - X_{11.5%}} \right))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maschinenfähigkeitsuntersuchung (MFU)

Maschinenfähigkeitsuntersuchungen werden über einen kurzen Zeitraum durchgeführt. Damit gehen hier im Wesentlichen die Maschine und Methode ein. Einflüsse unterschiedlicher Materialien, Bediener oder Umgebungsbedingungen werden nicht berücksichtigt und sollen daher möglichst konstant sein. Die Formeln sind die gleichen, wie für die Prozessfähigkeit. Die Ergebnisse werden jedoch als \(C_m \) und \(C_{mk} \) bezeichnet. Der empfohlene Stichprobenumfang ist \(n = 50 \) (Mindestumfang 20). Man spricht dabei auch von einer Kurzzeitfähigkeitsuntersuchung. Daraus resultieren auch die im Allgemeinen höheren Anforderungen an die Maschinenfähigkeitskennwerte \((C_m, C_{mk} \geq 1.67) \).

Werden weniger Stichprobendaten, als die empfohlenen 50 verwendet, so gilt die Anforderung bezogen auf den unteren Vertrauensgrenzwert (Vertrauensbereich 95%, Tabelle analog VDI/VDE 2645):

\[
C_{mk} \geq 1.67 (1 + \frac{1}{2n_{soll}}) \sqrt{\frac{n - 1}{X_{n-1,\alpha}^2}}
\]

mit \(n_{soll} = 50 \)

<table>
<thead>
<tr>
<th>n</th>
<th>(C_{mk})</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.93</td>
</tr>
<tr>
<td>25</td>
<td>1.85</td>
</tr>
<tr>
<td>30</td>
<td>1.79</td>
</tr>
<tr>
<td>35</td>
<td>1.75</td>
</tr>
<tr>
<td>40</td>
<td>1.72</td>
</tr>
<tr>
<td>45</td>
<td>1.69</td>
</tr>
<tr>
<td>50</td>
<td>1.67</td>
</tr>
</tbody>
</table>

Prozessfähigkeitsuntersuchung (PFU)

Die Prozessfähigkeitsuntersuchung soll sich auf einen Beobachtungszeitraum von mindestens 20 Produktionstagen beziehen. So gehen Einflüsse der Maschine, des Materials, der Methode, des Bedieners und der Umgebung in die Betrachtung ein. Dabei zieht man in möglichst gleichmäßigen Intervallen Stichproben im Gesamtumfang von \(n=125 \) (empfohener Wert). Zur Darstellung der Ergebnisse werden die Prozessfähigkeitskoeffizien-
Mess-System-Analyse mit ANOVA

Die Einflüsse werden bei der ANOVA nicht über den Range und einem Korrekturfaktor, sondern über eine Streuungszerlegung bestimmt (siehe hierzu auch Kapitel ANOVA). Dabei setzen sich die Einflüsse aus der Variation der Teile, der Prüfer, sowie der Wechselwirkung zwischen diesen zusammen. Der größte Vorteil der ANOVA ist die Berücksichtigung der Wechselwirkung, weshalb dieses Verfahren zu bevorzugen ist.

Um die Einflüsse getrennt beurteilen zu können, zerlegt man die Summe der quadratischen Abweichungen über alle Messwerte in Teilsummen und betrachtet deren Varianzen. Die klassische Darstellung im angelsächsischen Sprachraum ist:

<table>
<thead>
<tr>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F-Wert</th>
<th>Signifikanz aus F-Vertlg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,181E-05</td>
<td>1,313E-06</td>
<td>71,737</td>
<td>0,000</td>
</tr>
<tr>
<td>3,640E-07</td>
<td>1,820E-07</td>
<td>9,947</td>
<td>0,001</td>
</tr>
<tr>
<td>3,293E-07</td>
<td>1,830E-08</td>
<td>0,713</td>
<td></td>
</tr>
<tr>
<td>7,700E-07</td>
<td>2,567E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,328E-05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Darstellung der MSA ist:

<table>
<thead>
<tr>
<th>Sym.</th>
<th>Sum of Squares</th>
<th>%EV</th>
<th>%AV</th>
<th>%IA</th>
<th>%PV</th>
<th>%R&R</th>
<th>Signifikanz aus F-Vertlg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiederholbarkeit</td>
<td>9,080E-04</td>
<td>18,2</td>
<td></td>
<td></td>
<td>30,0</td>
<td>21,1</td>
<td></td>
</tr>
<tr>
<td>Prüfereinfluss</td>
<td>5,351E-04</td>
<td>10,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wechselwirkung</td>
<td>0,000E-01</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teilevariation</td>
<td>2,782E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messsystem</td>
<td>1,054E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zunächst werden Quadratsummen der Tabellendaten horizontal und vertikal gebildet (Sum of Squares). Mit Hilfe der Freiheitsgrade DF entsteht hieraus die Varianz (Mean Square) und die Standardabweichung der Anteile. Ausgegeben wird hiervon der 6-fache Wert, was 99,73% der Teile beinhaltet. Über dem F-Wert als Verhältnis der Varianzen-Summen von Prüfer und Wiederholungen werden die Signifikanz der Anteile bestimmt (in der Regel über den p_{value}).

Bei der Angabe der Beispielzahlen ist zu berücksichtigen, dass zur Verrechnung mit und ohne Wechselwirkungen andere Anteile entstehen.

Geschachtelte (nested) ANOVA

Ist es nicht möglich, dass die Teile nach den jeweiligen Messungen ihre Eigenschaften behalten, z.B. bei zerstörenden Prüfungen, so ist eine sogenannte geschachtelte ANOVA anwendbar. Das Ergebnis der Teilevariation ist mit den Prüfern vermengt. Deshalb gibt es hier die Ausgabe Teil (Prüfer), was nicht mit der Wechselwirkung WW der normalen ANOVA zu verwechseln ist. Eine WW kann hier nicht ausgewertet werden.

Man erwartet für die Wiederholbarkeit, dass die Gruppen von Teilen vergleichbare Eigenschaften haben (gleiche Chargen).
Im Vergleich zur vorher gezeigten Bestimmung der F-Werte, wird hier die MS für den Prüfer auf Teil(Prüfer) bezogen und die MS für das Teil auf die Wiederholbarkeit und nicht auf Teil*Prüfer.

Mess-System-Analyse analog VDA Band 5 bzw. ISO 22514-7

Im Verfahren nach VDA Band 5 bzw. ISO 22514-7 spricht man von Messunsicherheiten, deren Anteile analog der ANOVA berechnet werden. Hier betrachtet man jedoch nicht die Varianzen, sondern die Standardabweichungen, die über das Symbol \(u \) beschrieben werden. Grundsätzlich gilt aber:

Messunsicherheit. **Messprozess** = Messunsicherheit. Gerät + Messunsicherheit. Vorrichtung & Prüfer

Die wichtigsten Messunsicherheiten zeigt folgende Übersicht:

<table>
<thead>
<tr>
<th>Anteil</th>
<th>Symb.</th>
<th>Berechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auflösung der Anzeige</td>
<td>(u_{RE})</td>
<td>(= \frac{RE}{\sqrt{12}})</td>
</tr>
<tr>
<td>Systematische Abweichung</td>
<td>(u_{Bi})</td>
<td>(= \left</td>
</tr>
<tr>
<td>Wiederholbarkeit am Normal</td>
<td>(u_{EVR})</td>
<td>(= \frac{1}{\sqrt{n_n - 1}} \sum (x_i - \overline{x}_g)^2) (x_i) Messw. i-te Wiederh. (n_n) Anzahl Wiederholung</td>
</tr>
</tbody>
</table>

Hieraus wird der Geräteeinfluss (\(MS = \text{Mess-System} \)) als Zwischenergebnis gebildet:

\[
 u_{MS} = \sqrt{u_{Bi}^2 + \max\{u_{RE}^2; u_{EVR}^2\}}
\]

Der Umfang der Vorrichtung und des Prüfers ist:

<table>
<thead>
<tr>
<th>Anteil</th>
<th>Symb.</th>
<th>Berechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiederholbarkeit Prüfobjekt</td>
<td>(u_{EVO})</td>
<td>(= \sqrt{MS_{EV}})</td>
</tr>
<tr>
<td>Vergleichbarkeit Prüfer</td>
<td>(u_{AV})</td>
<td>(= \sqrt{MS_{AV}})</td>
</tr>
<tr>
<td>Wechselwirkung</td>
<td>(u_{IA})</td>
<td>(= \sqrt{MS_{IA}})</td>
</tr>
</tbody>
</table>

Insgesamt wird der Messprozess bestimmt durch:

\[
 u_{MP} = \sqrt{u_{Bi}^2 + \max\{u_{RE}^2; u_{EVR}^2; u_{EVO}^2\} + u_{AV}^2 + u_{IA}^2}
\]
Analog dem \(\%R&R\) wird hier auf die Toleranz bezogen und es ergibt sich die Kennzahl
\[
\%Q_{MP} = 100\% \cdot \frac{k \cdot 2 \cdot u_{MP}^2}{T_{tot}} \leq 30\%
\]
mit \(k=2\) für Verbr. 95,45\%, bzw. \(k=3\) für 99,73\%.

In manchen Bereichen wird auch \(\%Q_{MP} \leq 20\%\) gefordert. Weitere Messunsicherheiten z.B. Kalibrierung, Linearität, Stabilität, Temperatur, etc. können dem VDA Band 5 entnommen werden und sollen hier nicht berücksichtigt werden.

Verringerung der Messunsicherheit durch Wiederholungen

Für den Fall, dass die Anforderung nicht erreicht wird, aber kein alternatives Messmittel zur Verfügung steht, gibt es die Möglichkeit der Wiederholungen. Durch mehrfache Messungen und Mittelwertbildung kann eine Verringerung der Messunsicherheit erzielt werden. Zufällige Messunsicherheiten lassen sich bei \(m\)-Wiederholungen um den Faktor \(\sqrt{m}\) verringern. Der Anteil \(u_{EVO}\) wird dann zu
\[
u_{EVO}^* = \frac{u_{EVO}}{\sqrt{m}}
\]

Ist aus bisherigen Messungen \(u_{EVO}\) bekannt, so kann in umgekehrter Richtung die notwendige Anzahl Wiederholungen bestimmt werden, um die geforderte Messunsicherheit zu erreichen.

Gegenüberstellung zu den klassischen Verfahren

Eine Gegenüberstellung zu den bereits angesprochenen alten Verfahren zeigt folgende Übersicht:
Mess-System-Analyse für diskrete und ordinal skalierte Merkmale

In einer diskreten MSA soll für Untersuchungen und Prozesse aufzeigen, dass das Mess-System oder der Prüfer besser ist, als ein zufällig zustandekommenes Ergebnis. Im Folgenden werden diese Verfahren beschrieben:

- Gage R&R für diskrete Merkmale
- Kappa Methode (Fleiss-Kappa)
- Bowker-Verfahren
- Kendalls Konkordanz (ordinale Daten)

Gage R&R für diskrete Merkmale

Im Verfahren Gage R&R für diskrete Merkmale lässt man mehrere Prüfer jeweils zweimal verschiedene Teile beurteilen. Das könnten z.B. Prüfungen an Teilen sein, die entweder intakt, oder fehlerhaft sind. Die Prüfer dürfen nicht wissen, welches Teil sie vor sich haben und die Reihenfolge muss zufällig sein. Zu beachten sind die Hinweise zu den Prüfobjekten in einem späteren Kapitel.

Gibt es innerhalb eines Prüfers, oder zwischen verschiedenen Prüfern Abweichungen, so werden diese gezählt.

Im Verfahren mit Referenzwert sind den Prüfern zufällige Muster vorzulegen, von denen sie die Einstufung ebenfalls nicht kennen. Es werden mindestens 30 zufällige Muster empfohlen, die jeder Prüfer zweimal zu bewerten hat. Die Ergebnisse werden tabellarisch aufgetragen:

<table>
<thead>
<tr>
<th>Referenz</th>
<th>Prüfer A</th>
<th>Prüfer B</th>
<th>Prüfer C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 gut</td>
<td>gut</td>
<td>gut</td>
<td>gut</td>
</tr>
<tr>
<td>2 schlecht</td>
<td>schlecht</td>
<td>schlecht</td>
<td>schlecht</td>
</tr>
<tr>
<td>3 gut</td>
<td>gut</td>
<td>gut</td>
<td>gut</td>
</tr>
<tr>
<td>4 gut</td>
<td>gut</td>
<td>gut</td>
<td>gut</td>
</tr>
<tr>
<td>5 schlecht</td>
<td>schlecht</td>
<td>schlecht</td>
<td>schlecht</td>
</tr>
<tr>
<td>6 gut</td>
<td>gut</td>
<td>gut</td>
<td>gut</td>
</tr>
<tr>
<td>7 schlecht</td>
<td>schlecht</td>
<td>schlecht</td>
<td>schlecht</td>
</tr>
<tr>
<td>8 schlecht</td>
<td>schlecht</td>
<td>schlecht</td>
<td>schlecht</td>
</tr>
</tbody>
</table>

Eine Anforderung kann sein, dass das Verhältnis unterschiedlicher Ergebnisse zu der Anzahl Teile soll nicht größer als 5% oder 10% sein soll.

In diesem Beispiel haben Prüfer B und C mehr als 10% Abweichungen zur Referenz:
Kappa Methode

In der sogenannten **Kappa Methode** werden nicht nur, wie in der vorherigen Darstellung, die Abweichungen gezählt. Es stellt sich die Frage welcher Anteil nur zufällig möglich gewesen wäre. Die folgende Kenngröße Kappa berücksichtigt dies:

\[
\kappa = \frac{p_o - p_c}{1 - p_c}
\]

\(p_o \) : beobachtete Übereinstimmung
\(p_c \) : zufällig mögliche Übereinstimmung

Kappa stellt die Übereinstimmung zwischen verschiedenen Prüfern, oder zu einer Referenz dar, abzüglich einer zufälligen Übereinstimmung. Die Anforderung an Kappa ist in der Regel wie folgt gestaffelt:

\[
\begin{align*}
\kappa < 0,7 & \Rightarrow \text{nicht fähig} \\
0,7 \leq \kappa < 0,9 & \Rightarrow \text{bedingt fähig} \\
0,9 \leq \kappa < 1,0 & \Rightarrow \text{fähig}
\end{align*}
\]

Man kann die Übereinstimmung jedes Prüfers mit sich selbst ermitteln, also ob jedes Objekt/Teil immer gleich bewertet wird (**Wiederholbarkeit**). Dabei dürfen die Prüfer nicht wissen, welches Teil gerade bewertet wird. Das nächste ist die Überprüfung, wie sich die Prüfer untereinander verhalten (**Reproduzierbarkeit**). Für diese beiden Fragestellungen wendet man das sogenannte **Fleiss-Kappa** an. Für die Fragen nach der Übereinstimmung jedes Prüfers mit einer Referenz ist der **Cohen’s Kappa** relevant.

Die auszuwertende Tabelle ist im Grunde genauso aufgebaut, wie bei der Methode Gage R&R diskret. Hier wird jedoch anstelle der Kennzeichnung gut/schlecht 0 und 1 verwendet. Weiterhin können hier auch 3 Wiederholungen gemacht werden.

In folgendem Beispiel wurden 30 Teile von 3 Prüfern bewertet:

<table>
<thead>
<tr>
<th>Prüfer A</th>
<th>Prüfer B</th>
<th>Prüfer C</th>
</tr>
</thead>
<tbody>
<tr>
<td>korrekt</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>%</td>
<td>96,7</td>
<td>93,3</td>
</tr>
<tr>
<td>Fleiss k</td>
<td>0,955</td>
<td>0,910</td>
</tr>
<tr>
<td>95% CI</td>
<td>0,643</td>
<td>0,597</td>
</tr>
<tr>
<td>SE</td>
<td>0,1054</td>
<td>0,1054</td>
</tr>
<tr>
<td>z</td>
<td>9,06</td>
<td>8,63</td>
</tr>
<tr>
<td>p-val</td>
<td>0,00</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Am Ende der Tabelle wird die Nullhypothese getestet, dass sich die Übereinstimmung signifikant von einem zufälligen Ergebnis unterscheiden (p-value < 0,05).

Bowker-Verfahren

Im sogenannten Bowker-Verfahren gibt es ebenfalls die Beurteilungen gut/schlecht. Dabei können die Prüfer gleiche Ergebnisse haben, unterschiedliche, oder uneinheitlich sein. Mindestens 40 verschiedene Prüfobjekte werden von 2 Prüfern je 3mal geprüft. Jedes der 40 Ergebnisse wird in drei Klassen aufgeteilt:
Auswahlübersicht Mess-System-Analyse

- Ordinal skaliert
 - Einfluss der Wiederholbarkeit verschiedener Teile und Prüfer
 - Kendall Konkordanz
- Diskrete Messgrößen
 - Einfluss der Wiederholbarkeit verschiedener Teile
- Stetige Messgrößen
 - Einfluss der Wiederholbarkeit verschiedener Prüfer und Teile
- Einfluss der Wiederholbarkeit an einem Normal
 - Verfahren 1: C_{pk}
 - ANOVA VDA Band 5 ISO 22514-7

- Verfahren 2: Gage R&R MSA 4th Edition
- Verfahren 3: Gage R&R diskret MSA 4th Edition
- Kappa Methode MSA 4th Edition
- Bowker Verfahren VDA Band 5
Statistische Hypothesentests

Einführung
In einem Hypothesentest soll anhand einer Stichprobe eine Aussage auf die Datenkennwerte der Grundgesamtheit gemacht werden. Typische Formulierungen sind:

- Die **Nullhypothese** H_0 behauptet:
 Es besteht Gleichheit
 (z.B. die Mittelwerte zweier Stichproben sind gleich, oder
der Mittelwert einer angelieferten Charge entspricht der Vorgabe des Kunden,
der Verbrauch zweier Fahrzeuge ist gleich, etc.).

- Die **Alternativ-Hypothese** H_1 behauptet:
 Es gibt einen Unterschied
 (z.B. die Mittelwerte zweier Stichproben sind ungleich, oder
die angelieferte Ware ist fehlerhaft, etc.).

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird.

Bei der Durchführung eines statistischen Tests können zwei Arten von Fehlern gemacht werden:

1. Die Nullhypothese H_0 ist richtig und wird abgelehnt!
 ⇒ diesen Fehler bezeichnet man als Fehler 1. Art, oder den α-Fehler,
or das Produzentenrisiko.

2. Die Nullhypothese H_0 wird angenommen, obwohl sie falsch ist!
 ⇒ diesen Fehler bezeichnet man als Fehler 2. Art, oder den β-Fehler,
or das Konsumentenrisiko.

Insgesamt gibt es folgende vier Situationen:

<table>
<thead>
<tr>
<th>Entscheidung</th>
<th>Wirklichkeit</th>
<th>H_0</th>
<th>H_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>richtig</td>
<td>α-Fehler (1. Art)</td>
<td>richtig</td>
</tr>
<tr>
<td>H_1</td>
<td>β-Fehler (2. Art)</td>
<td>richtig</td>
<td></td>
</tr>
</tbody>
</table>

H_0 : Nullhypothese; H_1 oder H_A : Alternativhypothese

Merke:
- Der α-Fehler beschreibt das Risiko einen „Effekt“ anzunehmen, den es gar nicht gibt.
- Der β-Fehler beschreibt das Risiko einen „Effekt“ zu übersehen.
Bestimmung des α-Fehlers am Beispiel Mittelwertvergleich

Es ist die Nullhypothese H_0 zu prüfen: die Mittelwerte zweier Datenreihen sind gleich.

Der Abstand der Mittelwerte wird normiert auf eine gemeinsame Standardabweichung s_d.

$$t_{pr} = \frac{\bar{x}_1 - \bar{x}_2}{s_d}$$

für gleiche Stichprobenumfänge $n = n_1 = n_2$.

Mit Hilfe der t-Verteilung (Studentverteilung) erhält man den gesuchten Wert für den Fehler 1. Art.

$$p-val = 2 \cdot \text{VertlgStudent}(-t_{pr} : f)$$

Freiheitsgrad $f = n_1 + n_2 - 2$ für gleiche Standardabweichung der Stichproben.

Ist der Fehler 1. Art kleiner einer festgelegten Grenze von 5%, so wird die Nullhypothese auf Gleichheit abgelehnt.

Hinweis: Faktor 2 oben wegen zweiseitigem Test.

Der p-value

Man legt für den Fehler 1. Art einen zulässigen Grenzwert für α fest, in der Regel 5%.

Den tatsächlich vorhandenen Wert nennt man den p-value.
Übersicht über die Test-Statistiken
Die wichtigsten stetigen Verteilungen

Normalverteilung
Die Normalverteilung stellt die häufigste und gängigste Form der Wahrscheinlichkeitsverteilung dar. Sie tritt auf, wenn zufällige Ereignisse auf einen Prozess wirken. Viele natur-, wirtschafts- und ingenieursorientierte Vorgänge lassen sich durch die Normalverteilung entweder exakt oder wenigstens in sehr guter Näherung beschreiben (vor allem Prozesse, die in mehreren Faktoren unabhängig voneinander in verschiedene Richtungen wirken).

\[
h = \frac{1}{\sqrt{2\pi s}} e^{-\frac{1}{2} \left(\frac{x-\mu}{s} \right)^2}
\]

\(x\) : Variable Merkmal
\(\mu\) : Mittelwert
\(s\) : Standardabweichung

\[
H = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi s}} e^{-\frac{1}{2} \left(\frac{x-\mu}{s} \right)^2} \, dx
\]

Integral ist hier nicht geschlossen lösbar.

Im oberen Histogramm werden die Daten in passende Klassen eingeteilt und gezählt, wie viele sich darin befinden. Die Gaußkurve stellt die ideale Wahrscheinlichkeitsdichte für dieses Histogramm dar und beschreibt den Verlauf, wenn man „unendlich“ viele Daten hätte. Im sogenannten Wahrscheinlichkeitsnetz unten kann man im Maßstab der Y-Achse ablesen wie viele Daten in Summe von links bis zu einem Wert x vorliegen. Dies ist die Fläche unter der Gaußkurve. Der Mittelwert liegt im Wahrscheinlichkeitsnetz bei 50% (hier bei x=0).

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]
Der Vertrauensbereich des Mittelwertes ist:
\[
\bar{x} - t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}} \leq \bar{x} \leq \bar{x} + t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}}
\]

Der zweite Parameter der Normalverteilung ist die Standardabweichung \(s \):
\[
s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}
\]
\[
\text{Vertrauensb.: } s \frac{n-1}{\chi^2_{1-\alpha/2, n-1}} \leq s \leq s \frac{n-1}{\chi^2_{1, n-1}}
\]

Da für die quadrierten Abweichungen der Mittelwert benötigt wird, der aus den gleichen Daten stammt, muss man für eine Stichprobe einen sogenannten Freiheitsgrad abziehen (der Mittelwert ist aufgrund einer begrenzten Stichprobe fehlerbehaftet). Deshalb steht im Nenner \(n-1 \) statt nur \(n \).

Die Bestimmung der Häufigkeiten der Punkte im Wahrscheinlichkeitsnetz erfolgt näherungsweise mit:
\[
H = \frac{2i-1}{2n} \cdot 100\%
\]
mit \(i \) = Ordnungszahl der sortierten Werte

Die Steigung der Geraden ist durch die Streuung (Standardabweichung) der Daten bestimmt. \(\bar{x} \pm s \) liegt im Bereich von 16% bis 84%.

Beide Darstellungsformen haben ihre Vorteile. Im Histogramm können Mischverteilungen gut erkannt werden, wenn mehrere Gipfel vorliegen (siehe nächstes Kapitel). Im Wahrscheinlichkeitsnetz sieht Man jeden Datenpunkt und Abweichungen von der Geraden sind Abweichungen von der Normalverteilung.
Boxplot

Der Boxplot, auch Box-Whisker-Plot genannt, ist eine spezielle Darstellung der Häufigkeitsverteilung. Ein Boxplot soll schnell einen Eindruck darüber vermitteln, in welchem Bereich die Daten liegen und wie sie sich verteilen.

Der große Vorteil ist hierbei, dass mehrere Datenreihen als Boxplots nebeneinander sehr komprimiert darstellbar sind, während ein Histogramm die gesamte Diagrammbreite für nur eine Datenreihe benötigt.

Grundsätzlich besteht ein Boxplot aus einem Rechteck, Box genannt, und zwei Verlängerungen mit begrenzenden Linien, meist Whisker oder Antennen genannt. Es gibt unterschiedliche Verfahren diese Bereiche zu bestimmen:

1. Normalverteilung
 Aus den Daten werden Mittelwert und Standardabweichung berechnet. Mit diesen Kennwerten lassen sich die Bereiche von 50% und den zu definierenden äußeren Whisker für z.B. 95% oder 99% festlegen. Diese Methode liefert gute Schätzwerte für den Box und die Whisker und ist nicht so stark von der zufälligen Lage einzelner Punkte abhängig.

2. Verteilungsunabhängig
 Aus den Häufigkeiten der sortierten Daten werden die Bereiche direkt bestimmt. Die Häufigkeit jedes i-ten Datenpunktes wird durch \(H = \frac{i}{n+1} \) definiert. Bestimmte Literaturquellen verwenden \(H = \frac{i}{n} \), wodurch die Bereiche etwas anders liegen.

 In der Mitte des Boxplots befindet sich der Median (verteilungsunabhängiger Zentralwert). Der Box, in dem sich 50% aller Werte befinden, nennt man auch den Interquartil-Range, kurz IQR. Die Whisker liegen 1,5 · IQR ober- und unterhalb des 50%-Bereiches. Es wird jedoch nicht genau der Bereich von ±1,5 · IQR dargestellt, sondern nur bis zum nächst innerhalb liegendem Wert.
 Liegen Werte außerhalb ±1,5 · IQR werden diese als „milde Ausreißer“ betrachtet und als Stern markiert.
Weibull - Verteilung

Die von dem Schweden Waloddi Weibull entwickelte Verteilung ist eine universelle Verteilung, mit der die unterschiedlichsten Fragestellungen behandelt werden können. Am verbreitesten ist aber die Darstellung von Lebensdauerfragen. Im folgenden Beispiel wurde eine Gruppe von 30 Kugellagern bis zum Ausfall getestet (Schwingvorgänge). Durch eine entsprechende Klassierung ergibt sich ein Histogramm (Häufigkeiten der Ausfälle innerhalb einer Klasse):

In der rechten Darstellung wird die sogenannte Weibull-Dichtefunktion als Kurve darüber gelegt. Typisch für Lebensdaueruntersuchungen ist, im Gegensatz zu Normalverteilung, der nicht symmetrische Verlauf. Laufzeiten beginnen ab > 0 und es gibt einige Bauteile, die überproportional lange halten.

Eine andere Darstellung ist die Summenhäufigkeit. Alle Häufigkeiten werden von links nach rechts aufsummiert. Erst die rechte Grafik stellt die eigentliche Verteilungsform dar.
In der Praxis ist es interessanter, für eine definierte Laufzeit die Summe der Ausfälle zu nennen. Hier ohne Klassierung, ergibt die rechte Darstellung unmittelbar diese Ausfallmenge (Integral der Dichtefunktion links).

\[H = 1 - e^{-\left(\frac{t}{T}\right)^b} \]

\(H \): Ausfallhäufigkeit
\(t \): Laufzeit/strecke
\(T \): charakt. Lebensdauer (engl. \(\eta \))
\(b \): Formparameter (engl. \(\beta \))
Steigung der Geraden
Die Steigung im logarithmischen Maßstab wird in der Regel folgendermaßen interpretiert (Zuordnung bezieht sich nur auf b, ungeachtet der Lage im Weibull-Netz):

$b < 1$ „Frühausfälle“, z.B. wegen Fertigungs-/Montagefehlern

$b = 1$ Zufallsausfälle, es liegt eine konstante Ausfallrate vor und es besteht kein Zusammenhang zum eigentlichen Lebensdauermerkmal (stochastische Fehler), z.B. elektronische Bauteile

$b > 1$ Zeitabhängige Ausfälle (Alterungseffekt)
Ausfälle innerhalb des Auslegungszeitraumes, z.B. Kugellager $b \approx 2$, Wälzlager $b \approx 1,5$, Korrosion, Erosion $b \approx 3 – 4$, Gummi-Riemen $b \approx 2,5$, Stresskorrosion, spröde Materialien wie Keramik, einige Formen von Erosion $b > 4$.

Die Interpretation von b ist nur möglich bei Darstellung eines Fehlerbildes an einem Bauteil. Ansonsten können sich verschiedene Steigungen überlagern. Zu beachten ist dabei, dass sich die Begriffszuordnung nur auf die Steigung bezieht. Es gibt auch Fälle, in denen bei sehr frühen Laufzeiten Steigungen $b>1$ vorkommen, was ein Widerspruch wäre. Der Begriff Alterungseffekt ist eher negativ geprägt. Dabei ist es eigentlich die Zielsetzung bei der Auslegung eines Bauteils eine steile Steigung bei hoher Laufzeit zu haben.

Die Steigung b in der Weibull-Verteilung wird durch die Streuung geprägt, sie ist aber kein alleiniges Maß hierfür, denn die Standardabweichung der Weibull-Verteilung ist auch von T abhängig.

Im Vergleich bedeuten unterschiedliche b unterschiedliche Ausfallursachen. Eine höhere Belastung in Tests darf nur die charakteristische Lebensdauer T verkürzen, nicht jedoch b verändern, ansonsten ist der Test ungeeignet. Folgende Steigungen stellen Sonderfälle dar:

$b = 1$ Entspricht einer Exponential-Verteilung $H = 1 – e^{-\lambda t}$

$b = 2$ Entspricht Rayleigh-Verteilung Linearer Anstieg der Ausfallrate

$b = 3.2..3.6$ Entspricht einer Normalverteilung
Wie groß muss der Stichprobenumfang in einer Fertigung sein, dass bei einer Aussagewahrscheinlichkeit von $R = 80\%$ und einer erwarteten Zuverlässigkeit von $P_A = 95\%$ nicht mehr als $x = 1$ Fehler auftritt? Es werden $n = 59$ benötigt. Für den Fall, dass kein Fehler auftreten darf, wäre der Stichprobenumfang $n = 32$ gewesen (aufgerundet).

Success Run - Stichprobenumfang

Würde man die Prüfung letztlich doch bis zum Ausfall fahren, erhält man für die geforderte Lebensdauer t_{gef} folgende Darstellung:

Für die Stichprobe alleine würde sich eine Ausfallwahrscheinlichkeit von 2,8% ergeben. Da die Produktion Qualitätsschwankungen unterliegt, ist aber auch mit höheren Ausfallwahrscheinlichkeiten von bis zu 10% zu rechnen.

Weiterhin werden die Weibull-Verteilungen für die geforderte Lebensdauer und der Prüfzeit ins Verhältnis gesetzt und man erhält durch Umstellung letztlich die Standardformel:
\[R = \left(1 - P_A\right)^{\frac{1}{n \cdot L_v^b}} \]

- \(P_A \): Aussagewahrscheinlichkeit (obere Vertrauensgrenze)
- \(L_v \): Lebensdauerverhältnis (erprobt/geforderte Zeit)
- \(n \): Anzahl Versuche, bzw. Versuchsfahrzeuge
- \(b \): Formparameter der Weibull-Verteilung, wird in der Regel auf \(b=2 \) festgesetzt

Beispiel: Es wurden 3 Probanden 2mal länger getestet, als die Anforderung ist. Es ergibt sich eine Mindestzuverlässigkeit von 87,4%. Wenn \(R = 90\% \) gefordert sind, hätten 4 statt 3 Probanden geprüft werden müssen, oder die bestehenden 2,25mal der geforderten Testzeit.

Bei einem definierten \(R \) lässt sich der Stichprobenumfang \(n \) bestimmen, oder die notwendige Testzeit über \(L_v \):

\[n = \frac{1}{L_v^b} \left(\frac{\ln(1-P_A)}{\ln(R)} \right)^{1/b} \]

Grundsätzlich sollte \(L_v > 1 \) sein, wenn die Belastung nicht erhöht werden kann. Ungeachtet der rechnerischen Mindestzuverlässigkeit darf kein Teil bei \(L_v < 1 \) ausfallen (Mindestanforderung).

Für unterschiedliche Laufzeiten der Probanden ergibt sich die Mindestzuverlässigkeit über die Summe der Einzellaufzeiten:

\[R = \left(1 - P_A\right)^{\left(\sum_{i=1}^{k} L_i^b \cdot n_i\right)^{-1}} \]

\(k \) = Anzahl unterschiedliche Laufzeiten. Ist jedes Bauteil unterschiedlich lang gelaufen, so ist jeweils \(n_i = 1 \) und \(k = n \).
Belastungs-Testmatrix

Definition:
Die Belastungs-Testmatrix nutzt die Informationen der sogenannten „Noise-Factors“ von Taguchi und stellt die notwendigen Tests gegenüber. Im Gegensatz zur klassischen Robustheits-Checkliste aus der Six Sigma Welt werden hier jedoch keine Bezüge auf die Funktionen, sondern nur auf die Fehlerarten dargestellt.

Ziel und Nutzen:
Die Belastungs-Testmatrix zeigt auf, was für Belastungen und Fehlerarten durch welche Tests abgedeckt werden. Durch zusätzliche Angaben von Laufzeiten, Raffungsfaktoren, etc. ist eine quantitative Aussage auf die Zuverlässigkeit R möglich.

Vorgehensweise:

Beispiel:
Berechnung der Gesamtzuverlässigkeit

Für die Berechnung der Gesamtzuverlässigkeit gibt es 3 verschiedene Szenarien:

1.) **Im Test fallen keine Teile aus.** Die Bewertung erfolgt über die bekannte Methode nach Success-Run. Der ermittelte Wert stellt eine Mindestzuverlässigkeit dar, die in die Gesamtberechnung eingeht. Dies ist kein realer Wert, vielmehr eine statistische „worst-case“-Betrachtung.

2.) **Im Test fällt nur ein Teil aus.** Dies reicht nicht aus, um über eine Weibull-Verteilung die Zuverlässigkeit zu bestimmen. Vereinfacht wird eine Gerade mit der vorgegebenen Steigung durch diesen Punkt gelegt und eine Aussage an der gewünschten Stelle $L_V=1$ zu machen ($i=Lebensdauervorgabe$).

Basis der Berechnungen sind die Bauteile mit ihren Fehler Modes. Die Zuverlässigkeit des Gesamtsystems R_{ges} ergibt sich bekanntlich durch ein serielles Blockschaltbild und bezieht sich definitionsgemäß auf $L_V=1$:

$$R_{ges} = R_1 \cdot R_2 \cdot R_3 \ldots R_k = \prod_{j=1}^{k} R_j$$

Hier wird nicht, wie man erwarten würde, die Zuverlässigkeit innerhalb einer Testreihe berechnet, sondern die Zuverlässigkeit für jedes Bauteil über verschiedene Tests hinweg (waagrecht in folgendem Bild). Dies ist notwendig, um das Prinzip des Blockschaltbildes zu verwenden, dass auf die Bauteile referenziert. Mit der Vorgabe der Raffungsfaktoren κ können alle Tests über die bekannte Beziehung für Success Run zu einer Gesamtstichprobe zusammengefasst werden.

Testprogramme

[Diagramm von Testprogrammen]

- **Dauerlauf**
 - Welle gebrochen
 - Ventilsitz Verschleiß
 - Einlassventil Öffnungszeit
 - System Geräusch
 - Auslassventil Durchfluss

- **Thermoshock**
 - Welle
 - Ventil
 - Einlass
 - System
 - Auslass

- **Kälte-Test**
 - Welle
 - Ventil
 - Einlass
 - System
 - Auslass

- **Prüfeinheiten**
 - n_j, Prüfeinheiten
 - n, Prüfeinheiten

- **Versuche**
 - n_i, Prüfeinheiten

- **Versuchsfahrzeuge**
 - n_{A}, Prüfeinheiten

- **Statistische Berechnung**
 - $R_j = \left(1 - P_A\right)$
 - $P_A = \frac{1}{\sum_{i=1}^{k} (L_{V_i} \kappa_j)^{n_i}}$

- **Parameter**
 - P_A: Aussagewahrschein. (oberer Vertrauensgrad)
 - L_{V_i}: Lebensdauerverhältnis (erprobt/gef. Zeit)
 - κ: Raffungsfaktor
 - n: Anzahl Versuche, bzw. Versuchsfahrzeuge
 - b: Formparameter der Weibull-Verteilung, wird in der Regel auf $b=2$ festgesetzt
Stichwortverzeichnis

<table>
<thead>
<tr>
<th>Stichwort</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2-Verteilung</td>
<td>123</td>
</tr>
<tr>
<td>3-parametrische Weibull-Verteilung</td>
<td>143</td>
</tr>
<tr>
<td>4M Methode</td>
<td>13</td>
</tr>
<tr>
<td>4-parametrische Normalverteilung</td>
<td>133</td>
</tr>
<tr>
<td>4-parametrische Weibull-Verteilung</td>
<td>144</td>
</tr>
<tr>
<td>5-parametrische Normalverteilung</td>
<td>133</td>
</tr>
<tr>
<td>Abbruchkriterium, Weibull-Test</td>
<td>152</td>
</tr>
<tr>
<td>abhängige Größen, Wirkdiagramm</td>
<td>19</td>
</tr>
<tr>
<td>Abhängigkeiten, Wirkdiagramm</td>
<td>14</td>
</tr>
<tr>
<td>Abknicken Wöhler</td>
<td>176</td>
</tr>
<tr>
<td>Abstandsdaten, Clusteranalyse</td>
<td>77</td>
</tr>
<tr>
<td>Abstandsmatrix, Clusteranalyse</td>
<td>79</td>
</tr>
<tr>
<td>Abweichungen von Normalverteilung</td>
<td>131</td>
</tr>
<tr>
<td>adjustiertes Bestimmtheitsmaß</td>
<td>50</td>
</tr>
<tr>
<td>agglomerative Verfahren</td>
<td>77</td>
</tr>
<tr>
<td>Ähnlichkeitsmerkmale, Clusteranalyse</td>
<td>77</td>
</tr>
<tr>
<td>AHP</td>
<td>21</td>
</tr>
<tr>
<td>Aktivierungsenergie, Arrhenius</td>
<td>179</td>
</tr>
<tr>
<td>Aktivsummen</td>
<td>18</td>
</tr>
<tr>
<td>alternative Ausfallmechanismen</td>
<td>144</td>
</tr>
<tr>
<td>alternative Ausfallursachen</td>
<td>133</td>
</tr>
<tr>
<td>Alternativehypothese</td>
<td>103</td>
</tr>
<tr>
<td>Alternativehypothese, Hypothesentests</td>
<td>106</td>
</tr>
<tr>
<td>Alternativehypothese, Teststärke</td>
<td>106</td>
</tr>
<tr>
<td>Alterungseffekt</td>
<td>139</td>
</tr>
<tr>
<td>ANALYSE SixSigma</td>
<td>10</td>
</tr>
<tr>
<td>Analysis of Variance</td>
<td>40</td>
</tr>
<tr>
<td>Analytischer Hierarchieprozess</td>
<td>21</td>
</tr>
<tr>
<td>Anderson-Darling Test, Normal</td>
<td>110</td>
</tr>
<tr>
<td>Anderson-Darling Test, Weibull</td>
<td>111</td>
</tr>
<tr>
<td>ANOVA</td>
<td>40, 52, 188</td>
</tr>
<tr>
<td>ANOVA - Grundprinzip</td>
<td>40</td>
</tr>
<tr>
<td>ANOVA Messsystemanalyse</td>
<td>88</td>
</tr>
<tr>
<td>Anteilskombinationen, DoE</td>
<td>34</td>
</tr>
<tr>
<td>Anwärterprognose</td>
<td>154, 157</td>
</tr>
<tr>
<td>Appraiser Variation</td>
<td>86</td>
</tr>
<tr>
<td>Approximierung, Weibull 3-parametrig</td>
<td>143</td>
</tr>
<tr>
<td>äquidistante Stufen D-Optimal</td>
<td>33</td>
</tr>
<tr>
<td>Arcus-Sinus-Funktion</td>
<td>63</td>
</tr>
<tr>
<td>Arrhenius-Modell</td>
<td>178</td>
</tr>
<tr>
<td>Auflösung Versuchspläne</td>
<td>28</td>
</tr>
<tr>
<td>ausfallfreie Zeit</td>
<td>143, 158</td>
</tr>
<tr>
<td>Ausfallmerkmale</td>
<td>147</td>
</tr>
<tr>
<td>Ausfallrate</td>
<td>156</td>
</tr>
<tr>
<td>Ausfallrate momentane</td>
<td>134</td>
</tr>
<tr>
<td>Ausfallrate, Arrhenius</td>
<td>178</td>
</tr>
<tr>
<td>Ausfallursachen verschiedene</td>
<td>144</td>
</tr>
<tr>
<td>Ausfallwahrscheinlichkeit</td>
<td>121, 140</td>
</tr>
<tr>
<td>Ausfallwahrscheinlichkeiten</td>
<td>162, 165</td>
</tr>
<tr>
<td>Aussagewahrscheinlichkeit, Trennschärfe</td>
<td>107</td>
</tr>
<tr>
<td>Aussagewahrscheinlichkeit, Weibull</td>
<td>141</td>
</tr>
<tr>
<td>Aussortierung Histogramm</td>
<td>131</td>
</tr>
<tr>
<td>Auswahlkriterien, Versuchspläne</td>
<td>38</td>
</tr>
<tr>
<td>Auswertung, DoE</td>
<td>40</td>
</tr>
<tr>
<td>B_{10} - Weibull-Kennwert</td>
<td>156</td>
</tr>
<tr>
<td>Bartlett-Test</td>
<td>118</td>
</tr>
<tr>
<td>Baumstruktur Clusteranalyse</td>
<td>80</td>
</tr>
<tr>
<td>Baumstruktur, FTA</td>
<td>22</td>
</tr>
<tr>
<td>Baureihe, Schichtlinie</td>
<td>180</td>
</tr>
<tr>
<td>Bauteilbelastung Wöhler</td>
<td>174</td>
</tr>
<tr>
<td>Bauteilschspannung, Wöhler</td>
<td>173</td>
</tr>
<tr>
<td>Bayes-Methode</td>
<td>165</td>
</tr>
<tr>
<td>Bayessche Statistik</td>
<td>161</td>
</tr>
<tr>
<td>Belastung Wöhler</td>
<td>174</td>
</tr>
<tr>
<td>Belastungsgrenze, Wöhler</td>
<td>173</td>
</tr>
<tr>
<td>Belastungs-Testmatrix</td>
<td>167</td>
</tr>
<tr>
<td>Belastungszzeit</td>
<td>149</td>
</tr>
<tr>
<td>Beschleunigungsfaktor, Arrhenius</td>
<td>178</td>
</tr>
<tr>
<td>Bestimmtheitsmaß</td>
<td>49</td>
</tr>
<tr>
<td>Bestimmtheitsmaß, adjustiertes</td>
<td>50</td>
</tr>
<tr>
<td>Bestimmtheitsmaß, diskrete Regression</td>
<td>66</td>
</tr>
<tr>
<td>Bestimmtheitsmaß, Weibull</td>
<td>143</td>
</tr>
<tr>
<td>Bestimmtheitsmaß, Weibull</td>
<td>146</td>
</tr>
<tr>
<td>Bestpunkt Optimierung</td>
<td>56, 57</td>
</tr>
<tr>
<td>Beta-Binomial</td>
<td>142</td>
</tr>
<tr>
<td>Beta-Binomialverteilung</td>
<td>140, 141</td>
</tr>
<tr>
<td>Beta-Verteilung</td>
<td>187</td>
</tr>
<tr>
<td>betragsnormale Verteilung</td>
<td>132</td>
</tr>
<tr>
<td>Betragsnormalverteilung, Toleranzsimulation</td>
<td>97</td>
</tr>
<tr>
<td>Betragsverteilung 1. Art.</td>
<td>82</td>
</tr>
<tr>
<td>Betragsverteilung 2. Art.</td>
<td>83</td>
</tr>
<tr>
<td>Betriebsfestigkeit, Lognormalverteilung</td>
<td>135</td>
</tr>
<tr>
<td>Bewertungseinstfluss Matrix</td>
<td>17</td>
</tr>
<tr>
<td>Beyer</td>
<td>165</td>
</tr>
<tr>
<td>Beziehungen, Systemanalyse</td>
<td>12</td>
</tr>
<tr>
<td>Bezugsgröße, Messsystemanalyse</td>
<td>87</td>
</tr>
<tr>
<td>Biegeversuche</td>
<td>132</td>
</tr>
<tr>
<td>bimodale Verteilung</td>
<td>133, 144</td>
</tr>
<tr>
<td>Binomial-Koeffizient</td>
<td>125</td>
</tr>
<tr>
<td>Binomialsatz</td>
<td>162</td>
</tr>
<tr>
<td>Binomial-Test</td>
<td>114</td>
</tr>
<tr>
<td>Binomialverteilung</td>
<td>140, 184</td>
</tr>
<tr>
<td>Blockschaltbild</td>
<td>160</td>
</tr>
<tr>
<td>Bowker-Verfahren</td>
<td>92</td>
</tr>
<tr>
<td>Box-Cox-Transformation</td>
<td>55</td>
</tr>
<tr>
<td>Boxplot</td>
<td>130</td>
</tr>
<tr>
<td>Brainstorming</td>
<td>9</td>
</tr>
<tr>
<td>Bravais</td>
<td>43</td>
</tr>
<tr>
<td>Bravais, Korrelation nach</td>
<td>43</td>
</tr>
<tr>
<td>Bremsbeläge</td>
<td>139</td>
</tr>
<tr>
<td>Bremsscheibe Beispiel Weibull</td>
<td>143</td>
</tr>
<tr>
<td>Bruch</td>
<td>134</td>
</tr>
<tr>
<td>Bruchursachen</td>
<td>132</td>
</tr>
<tr>
<td>CAD-Modell</td>
<td>98</td>
</tr>
<tr>
<td>Cauchy-Verteilung</td>
<td>187</td>
</tr>
<tr>
<td>CCC</td>
<td>31</td>
</tr>
</tbody>
</table>
sprödbrechend ... 145
Stahlbauteile, Festigkeit 175
Stakeholderanalyse ... 10
Standardabweichung aus Toleranz 97
Standardabweichung, Gesamtmessung 54
Standardabweichung, Regelkarten 99
Standardisierung, Datenspalten 54
Stärken-/Schwächen-Analyse 9
Startcluster ... 77
Statistische Tests .. 103
Steigung Weibull ... 139, 175
Steigung Wöhler .. 176
Steigungstest ... 120
Sterbekurve ... 147
stetige Verteilungen 128
Stichprobe
 Häufigkeitsgruppen 67
Stichprobe, kleine .. 125
Stichprobe, unvollständiger Test 149
Stichprobe, Weibull-Vertrauensbereich 141
Stichprobengröße, Binomialansatz 162
Stichprobengröße, DoE 36
Stichprobengröße, Hypothesentests 107
Stichprobengröße, Mindestzuv. Vorkenntnisse 165
Stichprobengröße, Regelkarten 100
Stichprobengröße, Teststärke 106
Stichprobenkenngröße 99
Stichprobenüberwachung 10
stochastische Fehler 139
Streuung Modell-ANOVA 49
Streuungen, Toleranzberechnung 96
Streuungszerlegung .. 40
Streuungszerlegung, Modell-ANOVA 52
STR-Statistik ... 120
Struktur Clusteranalyse 77
Student-Verteilung .. 190
Stufenschritte D-Optimal 33
Success-Run ... 161
Sudden Death Testing 149
Sum of Squares ... 50
Summenhäufigkeit, Lognormal 135
Summenhäufigkeit, Normalverteilung 128
Summenhäufigkeit, Weibull 137, 140
Symmetrie .. 117
Systemanalyse ... 12, 16
systematische Untersuchung 12
Systemzuverlässigkeit 160, 172
Tabellenfunktion Vollfaktoriell 27
Taguchi Versuchspläne 29
teilweise Varianz ... 87
teilfaktorielle Versuchspläne 28, 29
Teilmenge, Weibull-Verlauf 158
Teillöschzeit ... 56
Temperaturabhängigkeit, Coffin-Manson 179
Temperatureinfluss, Lebensdauer 178
Testbedingungen Weibull 175
Teststärke .. 106
Testzeit, Sudden-Death 150
Tetraeder, Mischungsplan 34
textliche Benennungen, Parameter DoE 35

theoretische Lebensdauer
 Verschleißhochrechnung 172
 Toleranz Bezug auf 81
 Toleranz-Addition 96
 Toleranzberechnung 96
 Toleranzbereich, Regelkarte 99
 Toleranzkette, Simulation 97
 Top-Event, FTA ... 22
 träges Feld .. 18
 Transformation diskrete Regression 63
 Transformation, Weibull-Gerade 147
 Trennschärfen .. 106, 107
 Tschebyscheff Distanz 77
t-Test, 2 Stichproben 114
t-Test, Korrelationskoefizient 44
t-test, Vorgabewert 115
 t-Verteilung ... 190
 Two-Way ANOVA balanciert 41
 Two-Way ANOVA geschachtelt 43
 Überschreitungsanleit., Prozessfähigkeit 82
 UEG ... 99
 Unabhängigkeit korrelierende Daten 44
 Unabhängigkeitstest 124
 Unabhängigkeitstest, Korrelation 44
 uncontrolled factors 18
 unerklärte Abweichung, ANOVA 40
 Unfälle, Abnahme Grundgesamtheit 147
 ungeordnete Daten 77
 ungeplante Versuche 60
 universelle Verteilung 137
 unsymmetrische Verteilung 131
 unterscheidbare Kategorien 87
 Unterzielgrößen .. 18
 unvollständiger Test 149, 161
 u-Regelkarte ... 102
 Ursachen-Wirkungsdiagramm 13, 14
 U-Test ... 116
 UWG ... 99
 Variable Importance in the Projection 74
 Variablenselektion 74
 Varianz
 Weibull-Parameter 142
 Varianz (erklärte) 76
 Varianz des Effektes 36
 Varianz, diskrete Regression 65
 Varianz, Modell-ANOVA 50
 Varianzanalyse 40, 119
 Varianzinfationsfaktor 53
 Varianztest ... 117, 118
 VDA Band 5 ... 89
 VDI/VDE 2645 .. 84
 Verfahren 1, Messsystemanalyse 85
 Verfahren 2, Messsystemanalyse 85
 Verfahren 3, Messsystemanalyse 86
 Vergleich von Verteilungen 159
 vermengt
 ANOVA .. 88
 vermengte Wechselwirkungen 28
 Vermengung Histogram 131
 Vermengung, DoE .. 29
 Versagensmechanismen 133
 Verschleiß-Ausfallverhalten 143
 Verschleißgrad .. 171
Versuchsanzahl, DoE Überblick 37
Versuchsanzahl, D-Optimal 33
Versuchsanzahl, Hypothesentests 107
Versuchsanzahl, kategoriale Faktoren 36
Versuchsanzahl, Mischungspläne 35
Versuchsanzahl, teilverkauft 28
Versuchsanzahl, Vollfaktoriell 27
Versuchspläne, Auswahlkriterien 38
Versuchspläne, Einführung 26
Versuchspläne, Parameterbestimmung 17
Versuchspläne, Übersicht 38
Versuchsreihenholungen, DoE 36
Verteilungsformen, Konstruktionsmerkmale 83
Verteilungsfreie Prozessfähigkeit 83
verteilungsunabhängiger Test 2 Stichproben 116
Vertrauensbereich 142
 Poisson .. 121
 Zielgröße ... 55
 Vertrauensbereich, Binomial 184
 Vertrauensbereich, Kurvendiagramm 46
 Vertrauensbereich, Lack of Fit 51
 Vertrauensbereich, Maschinenfähigkeit 84
 Vertrauensbereich, Minimierung D-Optimal 33
 Vertrauensbereich, Mittelwert 129
 Vertrauensbereich, Mittelwert Poisson 186
 Vertrauensbereich, Prozessfähigkeit 82
 Vertrauensbereich, Success Run 163
 Vertrauensbereich, t-Test 115
 Vertrauensbereich, Varianzanalyse 119
 Vertrauensbereich, Vergleich Verteilungen 159
 Vertrauensbereich, Weibull 141
 Vertrauensbereich, Weibull-Parameter 141
 Vertrauengrenze 141
 Vertrauensgrenze, WeiBayes 161
 Verzugszeit .. 183
 Vierfeld-Tabelle 125
 VIF .. 53
 VIP .. 74
 vollständige Daten 156
 Vorhersagemäßigkeit 50
 Vorinformationsfaktor 165
 Vorkenntnisse Zuverlässigkeit 165
 Vorschädigung 146
 Vorschädigung, Weibull-Verlauf 158
 Vorzeichenrangtest 117
 Vorzeichenrangtest 117
 Vorzeitsrichtung, Daten 60
 Wahrscheinlichkeit diskrete Regression 62
 Wahrscheinlichkeitsebereich Wöhler 175
 Wahrscheinlichkeitsdiagramm, Weibull 140
 Wahrscheinlichkeitsdichte, Binomial 184
 Wahrscheinlichkeitsdichte, Normal 128
 Wahrscheinlichkeitsnetz 128
 Wahrscheinlichkeitsverhältnisse 64
 Wald-Test .. 66
 Warngrenzen ... 99
 Wechselwirkung, Messsystemanalyse 88
 Wechselwirkung, eindeutige Ermittlung 32
 Wechselwirkung, grafische Darstellung 47
 Wechselwirkung, höhere 33
 WeiBayes .. 161, 166
 Weibull in Schichtenlinien 181
 Weibull-Dichtefunktion 137
 Weibull-Parameter 140
 Weibull-Verteilung 137
 Western Electric Rules 100
 Whitney Test ... 116
 Wichtung PLS .. 73
 Wichtungsvektor PLS 73
 Wiederholbarkeit, Gütezahl Regression 52
 Wiederholungen, DoE 36
 Wilcoxon ... 117
 Wilcoxon Test 116
 Wilk .. 109
 Wirkdiagramm 14
 Wirkreihenfolge 14
 Wirkstärke .. 15
 Wirkungen .. 20
 Wirkungen, Systemanalyse 17
 Wöhler, Raftungstest 177
 Wöhlerdiagramm 173, 174
 Wöhlergerade .. 176
 Wölbung ... 113
 Wölbungstest ... 120
 Wunschfunktion, Optimierung 56
 Zeichentest ... 117
 zeitabhängige Ausfälle 139
 Zeitfestigkeitsbereich, Wöhler 173, 175
 Zeitraffung, Lebensdauer 178
 zensiert ... 152
 zensierte Normalverteilung 134
 zentral zusammengesetzter Versuchsplan 31
 zentrales Moment 113
 Zentrumspunkt, DoE 31
 zerstörenderen Prüfungen 88
 Zielgröße .. 55
 Zielgröße, Systemanalyse 19
 zufällige Verteilung
 Toleranzberechnung 98
 Zufallsausfälle 139
 Zufallsgrößen multiplikativ 135
 Zugversuche ... 132, 133
 Zusatzversuche, D-Optimal 33, 37
 Zuverlässigkeit 167
 zweigipflige Verteilung 131
 χ^2-Mehrfeldtest
 Häufigkeitsgruppen 68
 χ^2-Anpassungstest 111
 χ^2-Homogenitätstest 123
 χ^2-Mehrfeldtest 124
 χ^2-Verteilung 187